

United States Department of Agriculture

# U.S. AGRICULTURE AND FORESTRY Greenhouse Gas Inventory 1 9 9 0 - 2 0 1 3



TECHNICAL BULLETIN NUMBER 1943. SEPTEMBER 2016. Office of the Chief Economist | Climate Change Program Office

# U.S. AGRICULTURE AND FORESTRY Greenhouse Gas Inventory



#### U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2013

United States Department of Agriculture, Office of the Chief Economist, Climate Change Program Office. Technical Bulletin No. 1943. 137 pp. September 2016.

Data from this report can be downloaded from: http://dx.doi.org/10.15482/USDA.ADC/1264344

#### Abstract

The U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2013 was developed to update previous USDA greenhouse gas inventories and to revise estimates for previous years based on improved methodologies. This inventory provides a comprehensive assessment of the contribution of U.S. agriculture (i.e., livestock and crop production) and forestry to greenhouse gas (GHG) emissions. The document was prepared to support and expand on information provided in the official Inventory of U.S. GHG Emissions and Sinks (U.S. GHG Inventory), which is prepared annually by the U.S. Environmental Protection Agency. Carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), and nitrous oxide (N<sub>2</sub>O) concentrations in the atmosphere have increased by approximately 43 percent, 152 percent, and 20 percent respectively since about 1750. In 2013, total U.S. GHG emissions were 6,673 million metric tons of carbon dioxide equivalents (MMT CO, eq.), rising 5.9 percent from 1990 estimates. Carbon sequestration in managed forests, urban trees, and harvested wood products (882 MMT CO, eq.) reduced these emissions to a net 5,791 MMT CO, eq. in the United States in 2013. Agriculture alone accounted for about 9 percent of total U.S. emissions (595 MMT CO, eq.). The primary GHG sources from agriculture are N<sub>2</sub>O emissions from cropped and grazed soils (264 MMT CO<sub>2</sub> eq.), CH<sub>4</sub> emissions from ruminant livestock production (165 MMT CO, eq.) and rice cultivation (8 MMT CO, eq.), CH<sub>a</sub> and N<sub>2</sub>O emissions from managed livestock waste (79 MMT CO, eq.), and CO, emissions from on-farm energy use (74 MMT CO, eq.). The largest managed carbon sink in the United States is managed forests, which sequester 705 MMT CO, eq. The U.S. agriculture and forestry sector in aggregate provided a net sink of 270 MMT CO, eq. in 2013 (including GHG sources from crop and livestock production, grasslands, energy use, and GHG sinks for forests and urban trees). This report serves to estimate U.S. GHG emissions for the agricultural sector, to guantify uncertainty in emission estimates, and to estimate the potential of agriculture to mitigate U.S. GHG emissions.

Keywords: climate change, greenhouse gas, land use, carbon stocks, carbon sequestration, enteric fermentation, livestock waste, nitrous oxide, methane, rice cultivation, energy consumption.



September 1, 2016

#### Dear Reader:

I am pleased to present The U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2013. This report supersedes USDA Technical Bulletin 1930 (2011), which accounted for greenhouse gas emissions and sinks for the agricultural and forestry sectors through 2008.

This report is consistent with the U.S. Environmental Protection Agency's (EPA) *Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013* (April, 2015). However, EPA's national-scale reporting here has been disaggregated by region or State when possible. Some categories are not directly comparable due to different greenhouse gas source grouping. We believe this format will serve as a useful resource to land managers, planners, and others with an interest in greenhouse gas dynamics and their relationships to land use and land use change.

As part of the USDA Building Blocks for Climate Smart Agriculture and Forestry, the Office of the Chief Economist is coordinating efforts to track greenhouse gas sources and sinks in agriculture. Over the next few years, we will be updating key agricultural management practice and technology data. We expect that these new data inputs will significantly refine estimates of soil carbon, methane emissions from manure management systems, and nitrous oxide emissions from fertilizers. We also anticipate future improvements due to the new U.S. Forest Carbon Accounting Framework.

Data collection and analysis, as well as coordination of this *Inventory*, could not have been accomplished without the contributions of Stephen Del Grosso, Melissa Reyes-Fox, and others within USDA's Agricultural Research Service. I would also like to thank Rich Birdsey, Linda Heath, Coeli Hoover, and James Smith of the USDA Forest Service; James Duffield of USDA's Office of Energy Policy and New Uses; Marlen Eve and Jerry Hatfield of USDA's Agricultural Research Service; Tom Capehart, Elizabeth Marshall, and Ken Matthews of USDA's Economic Research Service; Jan Lewandrowski of USDA's Office of the Chief Economist; Stephen Ogle at the Natural Resources Ecology Laboratory of Colorado State University; and Tom Wirth in EPA's Office of Atmospheric Programs for their data, analysis, and review. Their thoughtful and diligent efforts compose the foundation of this report.

Sincerely,

William Hohenstein Director, USDA Climate Change Program Office

### Contributors

Marci Baranski (editor), Climate Change Program Office, USDA Stephen Del Grosso (editor), Agricultural Research Service, USDA Grant Domke, Forest Service, USDA James Duffield, Office of Energy Policy and New Uses, USDA Marlen Eve, Agricultural Research Service, USDA Ernie Marx, Natural Resources Ecology Laboratory, Colorado State University Kristopher Nichols, Agricultural Research Service, USDA Stephen Ogle, Natural Resources Ecology Laboratory, Colorado State University Melissa Reyes-Fox, Agricultural Research Service, USDA James Smith, Forest Service, USDA Amy Swan, Natural Resources Ecology Laboratory, Colorado State University Tom Wirth, Office of Atmospheric Programs, EPA Christopher Woodall, Forest Service, USDA

## U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2013 Table of Contents

| List o | f Maps and Figures                                                              | vii  |
|--------|---------------------------------------------------------------------------------|------|
| List o | f Tables                                                                        | viii |
| Ackno  | owledgements                                                                    | x    |
| Gloss  | ary of Terms and Units                                                          | xi   |
| Chap   | ter 1: Introduction                                                             | 1    |
| 1.     | 1 Global Change and Global Greenhouse Gas Emissions in Agriculture and Forestry | 1    |
| 1.     | 2 Sources and Mechanisms for Greenhouse Gas Emissions                           | 4    |
| 1.     | 3 Strategies for Greenhouse Gas Mitigation                                      |      |
| 1.     | 4 Purpose of This Report                                                        | 5    |
| 1.     | 5 Overview of the Report Structure                                              | б    |
| 1.     | 6 Summary of Changes and Additions for the Fourth Edition of the Inventory      | 7    |
| 1.     | 7 References                                                                    | 9    |
| Chap   | ter 2: Livestock and Grazed Land Emissions                                      |      |
| 2.     | 1 Summary of U.S. Greenhouse Gas Emissions from Livestock                       |      |
| 2.     | 2 Sources of Greenhouse Gas Emissions from Livestock                            |      |
| 2.     | 3 U.S. Livestock Populations                                                    |      |
| 2.     | 4 Enteric Fermentation                                                          |      |
| 2.     | 5 Managed Livestock Waste                                                       |      |
| 2.     | 6 Grazed Lands                                                                  |      |
| 2.     | 7 Mitigating Greenhouse Gas Emissions from Livestock                            |      |
| 2.     | 8 Planned Improvements                                                          | 27   |
| 2.     | 9 References                                                                    |      |
| 2.     | 10 Appendix A                                                                   |      |
| Cham   | tor 2. Cropland Agriculture                                                     | 53   |
| Chap   | ter 5: Cropiand Agriculture                                                     |      |
| 3.     | Summary of U.S. Greenhouse Gas Emissions from Cropland Agriculture              |      |
| 3.     | 2 Sources and Sinks of Greenhouse Gas Emissions in Cropland Agriculture         | 60   |
| 3.     | 3 Nitrous Oxide Emissions from Cropped Soils                                    |      |
| 3.4    | 4 Methane Emissions from Rice Cultivation                                       |      |
| 3.     | 5 Kesique Burning                                                               |      |
| 3.     | 6 Carbon Stock Changes in Cropped Soils                                         |      |
| 3.     | 7 Mitigation of CO <sub>2</sub> Emissions                                       |      |
| 3.     | 8 Planned Improvements                                                          |      |
| 3.9    | 9 References                                                                    | 79   |
| 3.     | 10 Appendix B                                                                   | 83   |

| Chapter | • 4: Carbon Stocks and Stock Changes in U.S. Forests                                   | 109 |
|---------|----------------------------------------------------------------------------------------|-----|
| 4.1     | Summary                                                                                | 109 |
| 4.2     | Background Concepts and Conventions for Reporting Forest Carbon                        | 110 |
| 4.3     | Carbon Stocks and Stock Changes by Forest Type, Region, and Ownership                  | 112 |
| 4.4     | Mechanisms of Carbon Transfer                                                          | 116 |
| 4.5     | Methods                                                                                | 117 |
| 4.6     | Major Changes Compared to Previous Inventories                                         | 119 |
| 4.7     | Uncertainty                                                                            | 119 |
| 4.8     | Planned Improvements                                                                   | 120 |
| 4.9     | References                                                                             | 121 |
| 4.10    | Appendix C                                                                             | 123 |
| Chapter | 5: Energy Use in Agriculture                                                           | 133 |
| 5.1     | Summary of Greenhouse Gas Emissions from Energy Use in Agriculture                     | 133 |
| 5.2     | Spatial and Temporal Trends in Greenhouse Gas Emissions from Energy Use in Agriculture | 133 |
| 5.3     | Sources of Greenhouse Gas Emissions from Energy Use on Agricultural Operations         | 134 |
| 5.4     | Methods for Estimating Carbon Dioxide Emissions from Energy Use in Agriculture         | 135 |
| 5.5     | Major Changes Compared to Previous Inventories                                         | 136 |
| 5.6     | References                                                                             | 137 |

# List of Maps and Figures

| Figure 1-1  | Agricultural Sources of Greenhouse Gas Emissions in 2013                                                           | 3   |
|-------------|--------------------------------------------------------------------------------------------------------------------|-----|
| Figure 1-2  | Agricultural and Forest Sinks of Carbon Dioxide in 2013                                                            | 3   |
| Figure 1-3  | Agriculture and Forestry Emissions and Offsets for 1990, 1995, 2000-2013                                           | 4   |
| Figure 2-1  | Greenhouse Gas Emissions from Livestock in 2013                                                                    | 11  |
| Map 2-1     | Greenhouse Gas Emissions from Livestock Production in 2013                                                         | 12  |
| Map 2-2     | Methane Emissions from Enteric Fermentation in 2013                                                                | 16  |
| Figure 2-2  | Greenhouse Gas Emissions from Managed Livestock Waste by Livestock Type in 2013                                    | 19  |
| Map 2-3     | Greenhouse Gas Emissions from Managed Livestock Waste in 2013                                                      | 19  |
| Figure 2-3  | Greenhouse Gas Emissions from Managed Livestock Waste, 1990-2013                                                   | 19  |
| Map 2-4     | Nitrous Oxide Emissions from Grazed Soils in 2013                                                                  | 23  |
| Figure 2-4  | Estimated Reductions in Methane Emissions from Anaerobic Digesters, 2000-2013                                      | 26  |
| Map 3-1a    | Total Nitrous Oxide (Direct and Indirect) for Major Land Resource Areas, Tier 3 Crops, Annual Means 2003–2007      | 58  |
| Map 3-1b    | Unit Area Nitrous Oxide (Direct and Indirect) for Major Land Resource Areas, Tier 3 Crops, Annual Means 2003–2007. | 58  |
| Figure 3-1a | U.S. Planted Cropland Area by Rotation Category, 1990-2007                                                         | 59  |
| Figure 3-1b | U.S. Planted Cropland Area by Crop Type, 1995-2013                                                                 | 59  |
| Figure 3-2  | Annual Nitrogen Inputs to Cropland Soil, 1990-2007                                                                 | 61  |
| Figure 3-3  | Methane from Rice Cultivation by State, 1990 & 2013                                                                | 69  |
| Figure 3-4  | Greenhouse Gas Emissions from Field Burning by Crop Type, 2013                                                     | 72  |
| Figure 3-5  | Change in Commodity Production, 1990-2013                                                                          | 72  |
| Figure 3-6  | Change in Commodity Production, 1990-2013                                                                          | 72  |
| Map 3-3a    | Soil Carbon Changes for Major Land Resource Areas, Tier 3 Crops, Annual Means                                      | 74  |
| Map 3-3b    | Unit Area Soil Carbon Changes for Major Land Resource Areas, Tier 3 Crops, Annual Means 2003–2007                  | 74  |
| Map 3-4a    | Soil Carbon Changes for Major Land Resource Areas, Tier 3 Crops Conventional Till, Annual Means 2003-2007          | 75  |
| Map 3-4b    | Soil Carbon Changes for Major Land Resource Areas, Tier 3 Crops Reduced Till, Annual Means 2003-2007               | 75  |
| Map 3-4c    | Soil Carbon Changes for Major Land Resource Areas, Tier 3 Crops No Till, Annual Means 2003-2007                    | 75  |
| Figure 3-7  | CO <sub>2</sub> Emissions and Sequestration Sources from Cropland Soils, 2003-2007                                 | 75  |
| Map 4-1     | Geographic Regions Used for Carbon Stock and Stock Change Summaries                                                | 112 |
| Figure 4-1  | Forest Ecosystem Carbon Stocks                                                                                     | 114 |
| Figure 4-2  | Net Annual Forest Carbon Stock Change                                                                              | 114 |
| Figure 4-3  | Summary Diagram of Forest Carbon Pools and Carbon Transfer Among Pools                                             | 116 |
| Figure 5-1  | CO <sub>2</sub> Emissions from Energy Use in Agriculture, by Region, 2013                                          | 134 |
| Figure 5-2  | Energy Use in Agriculture, by Source, 1965-2013                                                                    | 135 |
| Figure 5-3  | CO <sub>2</sub> Emissions from Energy Use in Agriculture, by Fuel Source, 2001, 2005, 2008, and 2013               | 136 |

### List of Tables

| Table 1-1  | Agriculture and Forestry Greenhouse Gas Emission Estimates and Uncertainty Intervals                                      | 1  |
|------------|---------------------------------------------------------------------------------------------------------------------------|----|
| Table 1-2  | Summary of Agriculture and Forestry Emissions and Offsets, 1990, 1995, 2000, 2005, 2010-2013                              | 3  |
| Table 2-1  | Greenhouse Gas Emission Estimates and Uncertainty Intervals in 2013                                                       | 11 |
| Table 2-2  | Greenhouse Gas Emissions by Livestock Category and Source in 2013                                                         | 12 |
| Table 2-3  | Descriptions of Livestock Waste Deposition and Storage Pathways                                                           | 14 |
| Table 2-4  | U.S. Methane Emissions from Enteric Fermentation in 1990, 1995, 2000, 2005, 2010-2013                                     | 16 |
| Table 2-5  | Greenhouse Gas Emissions from Managed Livestock Waste in 1990, 1995, 2000, 2005, 2010-2013                                | 18 |
| Table 2-6  | Greenhouse Gas Emissions from Grazed Lands in 1990, 1995, 2000, 2005, 2010-2013                                           | 22 |
| Table A-1  | Population of Animals by State in 2013                                                                                    | 31 |
| Table A-2  | U.S. Livestock Population, 1990, 1995, 2000, 2005-2013                                                                    | 32 |
| Table A-3  | State-Level Methane Emissions from Enteric Fermentation by Livestock Category in 2013                                     | 33 |
| Table A-4  | State-Level Methane Emissions from Enteric Fermentation in 1990, 1995, 2000, 2005-2013                                    | 34 |
| Table A-5  | Cattle Population Categories Used for Estimating Methane Emissions                                                        | 34 |
| Table A-6  | Dairy Lactation by Region <sup>1</sup>                                                                                    | 35 |
| Table A-7  | Typical Livestock Weights for 2013                                                                                        | 35 |
| Table A-8  | U.S. Feedlot Placements for 2013                                                                                          | 36 |
| Table A-9  | Regional Estimates of Digestible Energy and Methane Conversion Rates for Foraging Animals 2007-2013                       | 36 |
| Table A-10 | Regional Estimates of Digestible Energy and Methane Conversion Rates for Dairy and Feedlot Cattle for 2013                | 36 |
| Table A-11 | Definition of Regions for Characterizing the Diets of Dairy Cattle (all years) and Foraging Cattle 1990-2006              | 37 |
| Table A-12 | Definition of Regions for Characterizing the Diets of Foraging Cattle from 2007-2013                                      | 37 |
| Table A-13 | Methane Emissions from Cattle Enteric Fermentation, 1990-2013                                                             | 38 |
| Table A-14 | IPCC Emission Factors for Livestock                                                                                       | 38 |
| Table A-15 | Summary of Greenhouse Gas Emissions from Managed <sup>1</sup> Waste by State in 2013                                      | 39 |
| Table A-16 | Methane Emissions from Manure Management by State and Animal in 2013                                                      | 40 |
| Table A-17 | Nitrous Oxide Emissions from Manure Management by State and Animal in 2013                                                | 41 |
| Table A-18 | Waste Characteristics Data                                                                                                | 42 |
| Table A-19 | State Volatile Solids Production Rates in 2013                                                                            | 43 |
| Table A-20 | State-Based Methane Conversion Factors <sup>1</sup> for Liquid Waste Management Systems in 2013                           | 44 |
| Table A-21 | Maximum Methane Generation Potential, B <sub>0</sub>                                                                      | 45 |
| Table A-22 | Methane Conversion Factors for Dry Systems                                                                                | 45 |
| Table A-23 | Methane Conversion Factors for Dry Systems                                                                                | 46 |
| Table A-24 | Direct Nitrous Oxide Emission Factors for 2013                                                                            | 47 |
| Table A-25 | Nitrogen in Livestock Waste on Grazed Lands                                                                               | 48 |
| Table A-26 | MLRA-Level Estimates of Mean Annual Soil Carbon Stock Changes from Non-Federal Grasslands, 2003-2007                      | 49 |
| Table A-27 | MLRA-Level Estimates of Mean Annual Direct and Indirect N <sub>2</sub> O Emissions from Non-Federal Grasslands, 2003-2007 | 51 |
| Table 3-1  | Estimates and Uncertainties for Cropland Greenhouse Gas Emissions, 2013                                                   | 57 |
| Table 3-2  | Summary of Greenhouse Gas Emissions from Cropland Agriculture, 1990, 1995, 2000, 2005-2013                                | 58 |
| Table 3-3  | Tier 3 Cropland Area by Management Practice, 2013                                                                         | 59 |
| Table 3-4  | Nitrous Oxide Emissions from Differently Cropped Soils, 5-year Means                                                      | 62 |
| Table 3-5  | Methane from Rice Cultivation from Primary and Ratoon Operations by State, 1990, 1995, 2000, 2005-2013                    | 70 |
| Table 3-6  | Change in Methane Emissions from Rice Cultivation, 1990-2013                                                              | 70 |
| Table 3-7  | Greenhouse Gas Emissions from Agriculture Burning by Crop, 1990, 1995, 2000, 2005–2013                                    | 71 |
| Table 3-8  | Agricultural Crop Production                                                                                              | 73 |

| Table B-1  | MLRA-Level Area Estimates by Major Crop Rotation, 2003-2007                                                                                                                    | 84        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Table B-2  | MLRA-Level Estimates of Total Annual Direct N <sub>2</sub> O Emissions by Major Crop Rotation, 2003-2007                                                                       | 88        |
| Table B-3  | MLRA-Level Estimates of Total Annual Indirect N <sub>2</sub> O Emissions from Ammonia, Nitric Oxide, and Nitrogen Dioxide<br>Volatilization, by Major Crop Rotation, 2003-2007 | 92        |
| Table B-4  | MLRA-Level Estimates of Total Annual Indirect N <sub>2</sub> O Emissions for Nitrate Leaching<br>by Major Crop Rotation, 2003-2007                                             | 96        |
| Table B-5  | Rice Harvested Area, 1990, 1995, 2000-2013                                                                                                                                     | 100       |
| Table B-6  | Total U.S. Production of Crops Managed with Burning, 1990, 1995, 2000-2013                                                                                                     | 100       |
| Table B-7  | Production of Crops Managed with Burning                                                                                                                                       | 101       |
| Table B-8a | Crop Assumptions and Coefficients                                                                                                                                              | 101       |
| Table B-8b | Emissions Factors and Global Warming Potentials                                                                                                                                | 101       |
| Table B-8c | Rice Area Burned by State                                                                                                                                                      | 101       |
| Table B-9  | Cultivated Histosol (Organic Soils) Area                                                                                                                                       | 102       |
| Table B-10 | Carbon Loss Rates from Organic Soils Under Agricultural Management in the United States                                                                                        | 102       |
| Table B-11 | MLRA-Level Estimates of Annual Soil Carbon Stock Changes by Major Crop Rotation, 2003-2007                                                                                     | 103       |
| Table B-12 | State-Level Estimates of Mineral Soil Carbon Changes on Cropland <sup>1</sup> by Major Activity, 2013                                                                          | 107       |
| Table 4-1  | Forest Carbon Stock Change Annualized Estimates and Uncertainty Intervals, 2013                                                                                                | 109       |
| Table 4-2  | Forest Carbon Stock/Stock Change and Area Annualized Estimates, 1990, 1995, 2000, 2005, 2010, and 2013                                                                         | 110       |
| Table 4-3  | Carbon Stocks by Ownership and Forest Type and Groups by Region, 2013                                                                                                          | 111       |
| Table 4-4  | Total Annualized Carbon Stock Change 1990-2013, With Uncertainty Interval for 2013                                                                                             | 113       |
| Table 4-5  | Total Annualized Forest Land 1990-2013, with Uncertainty Interval for 2013                                                                                                     | 113       |
| Table 4-6  | Mean Plot-level Carbon Densities According to Region and Ownership for Six Carbon Pools Based on the Most Recer<br>Inventory Per State                                         | ıt<br>114 |
| Table 4-7  | Total Forest Ecosystem Carbon Stocks According to Region and Ownership for Six Carbon Pools Based on Annualized<br>Estimates for 2013                                          | ม่<br>115 |
| Table 4-8  | Net Annual Forest Ecosystem Carbon Stock Change According to Region and Ownership for Six Carbon Pools Based<br>Annualized Estimates for 2013                                  | on<br>115 |
| Table C-1a | Current Forest Land Area According to Region, Ownership, and Forest Type Group, 2013                                                                                           | 124       |
| Table C-1b | Current Forest Carbon Stocks in Live Trees According to Region, Ownership, and Forest Type Group, 2013                                                                         | 125       |
| Table C-2  | Annualized Carbon Stock Estimates per State, 2013e                                                                                                                             | 126       |
| Table C-3a | Mean Carbon Density, Range of Plot-Level Densities, and Forest Area on Publicly Owned Forestland (non-reserved) b<br>Region and Stand-Age Class, 2013                          | у<br>127  |
| Table C-3b | Mean Carbon Density, Range of Plot-Level Densities, and Forest Area on Privately Owned Forestland (non-reserved) I<br>Region and Stand-Age Class, 2013                         | су<br>128 |
| Table C-3c | Mean Carbon Density, Range of Plot-Level Densities, and Forest Area on Reserved Forestland (both public and privat<br>ownerships) by Region and Stand-Age Class, 2013          | e<br>129  |
| Table C-4a | Mean Carbon Density, Range of Plot-Level Densities, and Forest Area on Publicly Owned Forestland (non-reserved) b<br>Region and Stand-Age Class, 2013                          | у<br>130  |
| Table C-4b | Mean Carbon Density, Range of Plot-Level Densities, and Forest Area on Privately Owned Forestland (non-reserved) Region and Stand-Age Class, 2013                              | су<br>130 |
| Table C-4c | Mean Carbon Density, Range of Plot-Level Densities, and Forest Area on Reserved Forestland (both public and privat ownerships) by Region and Stand-Age Class, 2013             | e<br>131  |
| Table 5-1  | Energy Use and Carbon Dioxide Emissions by Fuel Source on U.S. Farms, 2013                                                                                                     | 133       |
| Table 5-2  | Definition of Regions Used in Figure 5-1                                                                                                                                       | 135       |

### Acknowledgments

This report was made possible by contributions from a number of individuals and collaboration between the United States Department of Agriculture (USDA), the U.S. Environmental Protection Agency (EPA), and Colorado State University.

The U.S. Agriculture and Forestry Greenhouse Gas Inventory (USDA GHG Inventory) is supplemental to the official Inventory of U.S. Greenhouse Gas Emissions and Sinks (U.S. GHG Inventory) submitted by EPA to the United Nations Framework Convention on Climate Change each April. We thank the EPA for permission to reprint estimates and methodologies from the official U.S. GHG Inventory. We would like to acknowledge the contribution of Tom Wirth of EPA's Office of Atmospheric Programs, who provided detailed emissions data for livestock sources of methane and nitrous oxide reported in Chapter 2. We also acknowledge William Parton, Keith Paustian, Stephen Williams, Kendrick Killian, Mark Easter, Shannon Spencer and Ram Gurung of the Natural Resource Ecology Laboratory (NREL) of Colorado State University who helped generate the agricultural soil carbon and nitrous oxide estimates for Chapters 2 and 3.

We also thank reviewers including Marlen Eve and Jerry Hatfield of USDA ARS; Tom Capehart, Elizabeth Marshall, and Ken Matthews of USDA ERS; Rich Birdsey and Coeli Hoover of USDA Forest Service; Jan Lewandrowski of USDA's Office of the Chief Economist; Tom Wirth of the EPA; and the staff of APHIS and ERS for additional review. Brenda Chapin and Susan Carter, Office of the Chief Economist, and the USDA Office of Communications provided assistance with publishing.

# Glossary of Terms and Units

#### **Chemical identities**

| Carbon                    |
|---------------------------|
| Carbon dioxide            |
| Carbon dioxide equivalent |
| Methane                   |
| Nitrous oxide             |
| Nitrogen oxides           |
|                           |

#### Metric units

| MT  | Metric ton (10 <sup>6</sup> grams or 1,000 kilograms) |
|-----|-------------------------------------------------------|
| Mg  | Megagram (10 <sup>6</sup> grams)                      |
| Gg  | Gigagram (10 <sup>9</sup> grams)                      |
| Tg  | Teragram (10 <sup>12</sup> grams)                     |
| MMT | Million metric tons (10 <sup>12</sup> grams)          |
| ha  | Hectares                                              |

### Livestock specific

| Maximum methane-producing capacity            |
|-----------------------------------------------|
| Cattle Enteric Fermentation Model             |
| Digestible energy                             |
| Methane conversion factor                     |
| Total Kjeldahl nitrogen excretion rate        |
| Typical animal mass                           |
| Volatile solids                               |
| Waste management system                       |
| Fraction of gross energy converted to methane |
|                                               |

### **Cropland specific**

| CRP  | USDA Conservation Reserve Program |
|------|-----------------------------------|
| MLRA | Major Land Resource Area          |

#### Forestry specific

| CRM   | Component ratio method                      |
|-------|---------------------------------------------|
| dbh   | Diameter breast height                      |
| FIA   | USDA Forest Inventory and Analysis          |
| FIADB | USDA Forest Inventory and Analysis Database |
| HWP   | Harvested wood products                     |
| SOC   | Soil organic carbon                         |

#### Energy specific

| BTU    | British thermal unit              |
|--------|-----------------------------------|
| QBTU   | Quadrillion British thermal units |
| EIA    | Energy Information Administration |
| LP gas | Liquid petroleum gas              |

#### Other

| EF  | Emission factor                   |
|-----|-----------------------------------|
| GHG | Greenhouse gas                    |
| GWP | Global warming potential          |
| NRI | U.S. National Resources Inventory |





Chapter 1 Download data: http://dx.doi.org/10.15482/USDA.ADC/1260729

### Introduction

#### 1.1 Global Change and Greenhouse Gas Emissions in Agriculture and Forestry

In 2013, total U.S. greenhouse gas emissions measured 6,673 million metric tons of carbon dioxide equivalents (MMT CO<sub>2</sub> eq.), rising 5.9 percent from 1990 estimates (EPA 2015). Global concentrations of the three most important long-lived greenhouse gases (GHG) in the atmosphere have increased measurably since the onset of the Industrial Revolution in 1750. Carbon dioxide ( $CO_2$ ), methane ( $CH_4$ ), and nitrous oxide (N<sub>2</sub>O) concentrations in the atmosphere have increased by approximately 43 percent, 152 percent, and 20 percent respectively (EPA 2015, Keeling and Whorf 2005, Dlugokencky et al. 2005, Prinn et al. 2000). Agriculture and forestry practices may either contribute to or remove GHGs from the atmosphere. Agriculture and forestry have contributed to GHGs in the atmosphere through cultivation and fertilization of soils, production of ruminant livestock, management of livestock manure, land use conversions, and fuel consumption.

The primary GHG sources from agriculture are N<sub>2</sub>O emissions from cropped and grazed soils, CH<sub>4</sub> emissions from ruminant livestock production and rice cultivation, CH<sub>4</sub> and N<sub>2</sub>O emissions from managed livestock waste, and CO<sub>2</sub> emissions from on-farm energy use. The management of cropped, grazed, and forestland has helped offset GHG emissions by promoting the biological uptake of CO<sub>2</sub> through the incorporation of carbon into biomass, wood products, and soils, yielding a U.S. net emissions of 5,791 MMT CO<sub>2</sub> eq. in 2013. Net emissions equate to total greenhouse gas emissions minus CO<sub>2</sub> sequestration or removal of CO<sub>2</sub> from the atmosphere, including the net forest sink as well as the net soil sink from grazed lands and croplands. This report serves to estimate U.S. GHG emissions for the agricultural sector, to quantify uncertainty in emission estimates, and to estimate the potential of agriculture to mitigate U.S. GHG emissions.

Observed increases in atmospheric GHG concentrations are primarily a result of fossil fuel combustion for power generation, transportation, and construction. In the United States, agriculture accounted for approximately 9 percent of total GHG emissions in 2013 (EPA 2015). Greenhouse gas emission estimates reported here are in units of  $CO_2$  equivalents. Box 1-1 describes this reporting convention, which normalizes all GHG emissions to  $CO_2$  equivalents using Global Warming Potentials (GWP). Note that GWPs for  $CH_4$  and  $N_2O$  have changed compared to the previous edition of this inventory.

Agriculture in the United States, including livestock, grasslands, crop production, and energy use, contributed a total of 595 MMT CO<sub>2</sub> eq. to the atmosphere in 2013 (Table 1-1). This total includes a relatively small soil CO<sub>2</sub> sink of 1.4 MMT CO<sub>2</sub> eq. in cropped soils (Table 1-2). In previous USDA Inventory reports, grazed lands were a relatively large sink for CO<sub>2</sub>, but new simulations using more recent land cover data estimate that grazed lands are currently close to CO<sub>2</sub> neutral. Forests and urban trees in the United States contributed to a total reduction in atmospheric GHGs of approximately 865 MMT CO<sub>2</sub> eq. in 2013, which offset total U.S. GHG emissions by 13 percent. After accounting for GHG sources and C sequestration, agricultural and forested lands in the United States were estimated to be a net sink of 270 MMT CO<sub>2</sub> eq. (Table 1-1). The 95 percent confidence interval for this estimate ranges from a sink of 486 to 38 MMT CO<sub>2</sub> eq. (Table 1-1).

#### Table 1-1 Agriculture and Forestry Greenhouse Gas Emission Estimates and Uncertainty Intervals, 2013

|                         | Estimate | Lower Bound | Upper Bound |
|-------------------------|----------|-------------|-------------|
| Source                  |          | MM          | T CO2 eq.   |
| Livestock               | 243      | 222         | 276         |
| Crops <sup>1</sup>      | 175      | 129         | 249         |
| Grassland <sup>1</sup>  | 102      | 32          | 190         |
| Energy Use <sup>2</sup> | 74       |             |             |
| Forestry                | (776)    | (973)       | (576)       |
| Urban Trees             | (90)     | (133)       | (47)        |
| Net Emissions           | (270)    | (486)       | (38)        |

Note: Parentheses indicate a net sequestration. MMT  $\mathrm{CO}_2$  eq. is million metric tons carbon dioxide equivalent.

<sup>1</sup>Includes sequestration in agricultural soils.

<sup>2</sup>Confidence intervals were not available for this component.



#### Box 1-1

The USDA GHG Inventory report follows the international convention for reporting GHG emissions, as described in the introduction of the U.S. GHG Inventory (EPA 2015). Emissions of GHGs are expressed in equivalent terms, normalized to carbon dioxide (CO<sub>2</sub>) using Global Warming Potentials (GWPs) published by the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (Table B1-1). GWPs, which are based on physical and chemical properties of gases, represent the effect of a given GHG on the climate, integrated over a given period of time, relative to CO<sub>2</sub> (IPCC 2006). Since the reference gas used is CO<sub>2</sub>, GWP-weighted emissions are measured in million metric tons of CO<sub>2</sub> equivalent (MMT CO<sub>2</sub> eq.). GWP values allow for a comparison of the impacts of emissions and reductions of different gases. These values for methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) are referenced to CO<sub>2</sub> and based on a 100-year time period (EPA 2015). These GWPs have been adjusted since the previous USDA Inventory Report was published.

Table B1-1 (reproduced from U.S. GHG Inventory Report (EPA 2015), Table 1-2)

| Gas             | Atmospheric Lifetime | GWP <sup>c</sup> |
|-----------------|----------------------|------------------|
| CO <sub>2</sub> | b                    | 1                |
| CH₄ª            | 12                   | 25               |
| N,O             | 114                  | 298              |

Source: (IPCC 2007)

<sup>a</sup> The GWP of CH<sub>4</sub> includes the direct effects and those indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO<sub>3</sub> is not included.

<sup>b</sup> For a given amount of carbon dioxide emitted, some fraction of the atmospheric increase in concentration is quickly absorbed by the oceans and terrestrial vegetation, thus will continue to cycle through aquatic and terrestrial ecosystems as carbon. Some fraction of the atmospheric carbon dioxide will only slowly decrease over a number of years, and depending on the amount of carbon dioxide emitted, between 15% and 40% can remain in the atmosphere for up to 2000 years (IPCC 2013). <sup>c</sup> 100-year time horizon.

The relationship between kilotons (kt) of a gas and MMT CO<sub>2</sub> eq. can be expressed as follows:

MMT CO<sub>2</sub> eq. = (kt of gas)x(GWP)x(MMT/1000kt)

where,  $MMT CO_2 eq. = Million metric tons of CO_2 equivalent$  kt = Kilotons (equivalent to a thousand metric tons) GWP = Global warming potentialMMT = Million metric tons

Close to half (45 percent) of agriculture's GHG emissions in 2013 were from soils (Figure 1-1). Most of the emissions from crop production were from non-rice soils, with residue burning and rice cropping accounting for about 1 percent of overall agricultural emissions (Figure 1-1). Enteric fermentation from livestock production was responsible for a large portion (28 percent) of the remaining agricultural emissions. Managed livestock waste and on-farm energy use each accounted for 13 percent of agricultural emissions. It should be noted that the estimates in Figure 1-1 are for emissions only, and do not account for C storage in agricultural soils and forests. Regarding sequestration, forests are by far the leading sink, followed by urban trees and harvested wood products (Figure 1-2).

Sources and sinks of emissions are conveniently partitioned in Figure 1-3 (sinks are values less than 0). Overall emissions profiles of agricultural sources, including energy use but excluding storage by soils and forestry, show that sources increased 13 percent between 1990 and 2013 (Table 1-2, Figure 1-3). The sink strength of the forests, harvested wood, and urban trees pool has increased 24 percent since 1990 (Table 1-2, Figure 1-3). However, the sink strength of agricultural soils has decreased by approximately 104 percent since 1990. In sum, emissions increased from 1990 to 2013, but C storage related to forestry increased to an even greater extent. Because C sequestration exceeds sources, net emissions are negative (GHG sink), and the amount of net sequestration increased by about 23 percent since 1990 (Table 1-2).



Figure 1-1 Agricultural Sources of Greenhouse Gas **Emissions in 2013** (CH<sub>4</sub> is methane; N<sub>2</sub>O is nitrous oxide; CO<sub>2</sub> is carbon dioxide. MMT  $CO_2$  eq. is million metric tons of carbon dioxide equivalent)

Figure 1-2 Agricultural and Forest Sinks of Carbon Dioxide in 2013 (MMT CO, eq. is million metric tons of carbon dioxide equivalent)

#### Table 1-2 Summary of Agriculture and Forestry Emissions and Offsets, 1990, 1995, 2000, 2005, 2010-2013

|                             |                 | 1990    | 1995    | 2000    | 2005    | 2010    | 2011    | 2012    | 2013    |
|-----------------------------|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Source                      | GHG             |         |         |         | MMT C   | CO2 eq. |         |         |         |
| Livestock                   |                 | 215.1   | 236.9   | 236.9   | 241.6   | 249.1   | 247.4   | 247.4   | 243.2   |
| Enteric<br>Fermentation     | $\mathrm{CH}_4$ | 164.2   | 178.7   | 170.6   | 168.9   | 171.1   | 168.7   | 166.3   | 164.5   |
| Managed Waste               | $\mathrm{CH}_4$ | 37.2    | 43.3    | 50.0    | 56.3    | 60.9    | 61.4    | 63.7    | 61.4    |
| Managed Waste               | $N_2O$          | 13.8    | 15.0    | 16.3    | 16.4    | 17.1    | 17.3    | 17.3    | 17.3    |
| Grassland                   |                 | 73.9    | 93.6    | 33.0    | 82.9    | 101.5   | 101.4   | 100.7   | 102.0   |
| Grassland                   | $\mathrm{CH}_4$ | 2.7     | 2.9     | 2.7     | 2.7     | 2.6     | 2.6     | 2.5     | 2.8     |
| Grassland                   | $N_2O$          | 80.5    | 90.3    | 70.8    | 85.0    | 96.1    | 96.0    | 95.5    | 95.9    |
| Grassland                   | $\rm CO_2$      | (9.3)   | 0.3     | (40.5)  | (4.8)   | 2.8     | 2.8     | 2.7     | 3.3     |
| Crops                       |                 | 117.0   | 161.5   | 133.1   | 164.0   | 174.7   | 173.0   | 177.1   | 175.1   |
| Cropland Soils <sup>1</sup> | $N_2O$          | 143.5   | 158.2   | 141.8   | 158.6   | 168.1   | 169.8   | 170.5   | 167.8   |
| Cropland Soils <sup>2</sup> | $\rm CO_2$      | (36.0)  | (6.9)   | (18.8)  | (3.9)   | (4.9)   | (5.7)   | (3.1)   | (1.4)   |
| Rice Cultivation            | $\mathrm{CH}_4$ | 9.2     | 9.8     | 9.6     | 8.9     | 11.1    | 8.5     | 9.3     | 8.3     |
| Residue Burning             | $\mathrm{CH}_4$ | 0.3     | 0.3     | 0.3     | 0.2     | 0.3     | 0.3     | 0.3     | 0.3     |
| Residue Burning             | $N_2O$          | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     |
| Energy Use <sup>3</sup>     | $\rm CO_2$      | 73.9    | 73.9    | 73.9    | 69.9    | 72.7    | 73.3    | 73.9    | 74.4    |
| Forestry                    |                 | (699.8) | (728.0) | (563.2) | (887.6) | (851.5) | (856.1) | (860.7) | (865.2) |
| Forests <sup>4</sup>        | $\rm CO_2$      | (508)   | (542)   | (376)   | (704)   | (705)   | (705)   | (705)   | (705)   |
| Harvested Wood <sup>4</sup> | $\rm CO_2$      | (132)   | (118)   | (113)   | (103)   | (60.5)  | (63.9)  | (67.3)  | (70.8)  |
| Urban Trees <sup>5</sup>    | $\rm CO_2$      | (60.4)  | (67.1)  | (73.8)  | (80.5)  | (86.1)  | (87.3)  | (88.4)  | (89.5)  |
| Net Emissions               | All<br>GHGs     | (219.8) | (162.0) | (86.2)  | (329.2) | (253.5) | (261.1) | (261.6) | (270.4) |

Note: Parentheses indicate a net sequestration. MMT CO2 eq. is million metric tons carbon dioxide equivalent. CH4 is methane; N2O is nitrous oxide; CO2 is carbon dioxide.

<sup>1</sup>Includes emissions from managed manure during storage and transport before soil application.

<sup>2</sup>Agricultural soil C sequestration includes sequestration on land set aside under the USDA Conservation Reserve Program, in addition to cultivated mineral and organic soils.

<sup>3</sup>Data interpolated for all years except 2001, 2005, 2008, and 2013.

<sup>4</sup>Data were interpolated for years 2001-2004, 2006-2009, and 2011-2012.

<sup>5</sup>Data taken from EPA. Data were interpolated for years 1995 and 2000.



**Figure 1-3 Agriculture and Forestry Emissions and Offsets for 1990, 1995, 2000-2013** (MMT CO<sub>2</sub> eq. is million metric tons of carbon dioxide equivalent)

Annual CO<sub>2</sub> emissions from on-farm energy use in agriculture are small relative to total energy use across all sectors in the United States. In 2013, fuel and electricity consumption associated with crop and livestock operations resulted in 74 MMT CO<sub>2</sub> (Table 1-1), which equals 1.4 percent of overall energyrelated CO<sub>2</sub> emissions for 2013 (5332 MMT CO<sub>2</sub>, EPA 2015). Diesel fuel use led to about 42 percent of CO<sub>2</sub> emissions from energy use in agriculture; electricity use led to about 37 percent; and gasoline, liquefied petroleum gas, and natural gas contributed 10 percent, 7 percent, and 4 percent, respectively, to total CO<sub>2</sub> emissions from energy use in agriculture.

#### **1.2 Sources and Mechanisms for Greenhouse Gas Emissions**

One-half to two-thirds of global annual CH<sub>4</sub> emissions and roughly a third of global annual emissions of N<sub>2</sub>O are believed to derive from human sources, mainly from agriculture (IPCC 2013). Agricultural activities contribute to these emissions in a number of ways. While losses of N<sub>2</sub>O to the atmosphere occur naturally, the application of nitrogen to amend soil fertility increases the rate of emissions. The rate is amplified when more nitrogen is applied than can be used by the plants, either due to volume or timing. In agricultural practices, nitrogen is added to soils through the use of synthetic fertilizers, application of manure, cultivation of nitrogen-fixing crops/forages (e.g. legumes), and retention of crop residues. Rice cultivation involves periodic flooding of rice paddies, which promotes anaerobic decomposition of organic matter (rice residue and organic fertilizers) in the soil by soil

microbes, resulting in methane emissions. Finally, burning of residues in agricultural fields produces  $CH_4$  and  $N_2O$  as combustion byproducts.

Livestock grazing, production, and waste emit CH<sub>4</sub> and N<sub>2</sub>O into the atmosphere. Ruminant livestock such as cattle, sheep, and goats emit CH<sub>4</sub> as a byproduct of their digestive processes (called enteric fermentation). Managed livestock waste can release CH<sub>4</sub> through the biological breakdown of organic compounds and N<sub>2</sub>O through nitrification and denitrification of nitrogen contained in manure; the magnitude of emissions depends in large part on manure management practices and to some degree on the energy content of livestock feed. Grazed lands have enhanced N<sub>2</sub>O emissions from nitrogen additions through manure and urine and from biological fixation of nitrogen by legumes, which are typically seeded in heavily grazed pastures. Some pastures are also amended with nitrogen fertilizers, managed manure, and sewage sludge, which also contribute to GHG emissions on those lands.

#### 1.3 Strategies for Greenhouse Gas Mitigation

Agriculture and forest management can mitigate GHG emissions in two ways: sources can be reduced and emissions can be offset by increasing capacity for carbon uptake and storage in biomass, wood products, and soils. This process is referred to as carbon sequestration. The net flux of CO<sub>2</sub> between the land and the atmosphere is a balance between carbon losses from land use conversion and land management practices, and carbon gains from forest

growth and sequestration in soils (IPCC 2001). Improved forest regeneration and management practices such as density control, nutrient management, and genetic tree improvement promote tree growth and enhance carbon accumulation in biomass. In addition, wood products harvested from forests can serve as long-term carbon storage pools. The adoption of agroforestry practices like windbreaks and riparian forest buffers, which incorporate trees and shrubs into ongoing farm operations, represents a potentially large GHG sink nationally. While deforestation is a large global source of CO<sub>2</sub>, within the United States, net forestland area has increased in recent decades (see Chapter 4). Avoidance of large-scale deforestation and adoption of the practices mentioned above have resulted in the forestry sector being a net GHG sink in the United States. This sink could be increased by increasing afforestation and implementing more intensive management to increase forest growth (McKinley et al. 2011).

Agricultural practices such as conservation tillage and grassland practices such as rotational grazing can also reduce carbon losses and promote carbon sequestration in agricultural soils. These practices offset  $CO_2$  emissions caused by land use activities such as conventional tillage and cultivation of organic soils. However, strategies intended to sequester carbon in soils can also impact the fluxes of two important non- $CO_2$  GHGs, N<sub>2</sub>O and  $CH_4$ . Consequently, the net impact of different management strategies on all three biogenic GHGs must be considered when comparing alternatives (Robertson et al. 2000, Del Grosso et al. 2005).

Innovative practices to reduce GHG emissions from livestock include modifying energy content of livestock feed, inoculating feed with agents that reduce  $CH_4$  emissions from digestive processes, and managing manure in controlled systems that reduce or eliminate GHG emissions. For example, anaerobic digesters are a promising technology, whereby  $CH_4$  emissions from livestock waste are captured and used as an alternative energy source. Nitrous oxide emissions from soils can be reduced by precision application of nitrogen fertilizers and use of nitrification inhibitors. A recent USDA report (Eve et al. 2014) discusses these and other mitigation options in detail and quantifies expected GHG reductions (or increases) for various land management practices.

#### **1.4 Purpose of This Report**

The U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2013 was developed to update the U.S. Agriculture and Forestry Greenhouse Gas Inventories: 1990-2001 (USDA 2004), 1990-2005 (USDA 2008) and 1990-2008 (USDA 2011) and to revise estimates for previous years based on improved methodologies. This inventory provides a comprehensive assessment of the contribution of U.S. agriculture (i.e., livestock and crop production) and forestry to greenhouse gas emissions. The document was prepared to support and expand on information provided in the official Inventory of U.S. GHG Emissions and Sinks (U.S. GHG Inventory), which is prepared annually by the U.S. Environmental Protection Agency to meet U.S. commitments under the United Nations Framework Convention on Climate Change (EPA 2015). This report, the U.S. Agriculture and Forestry GHG Inventory (USDA GHG Inventory), supplements the U.S. GHG Inventory, providing an in-depth look at agriculture and forestry emissions and sinks of GHG and presenting additional information on GHG emissions from fuel consumption on U.S. farms.

The U.S. GHG Inventory provides national-level estimates of emissions of the primary long-lived GHGs (carbon dioxide, methane, nitrous oxide, and fluorinated gases) across a broad range of sectors (energy, industrial processes, solvent use, agriculture, land use change and forestry, and waste). Due to the national-level scale of reporting in the U.S. GHG inventory, that report does not always provide regional or State GHG emissions data. However, in some cases Major Land Resource Area (MLRA), State, and regional emissions data are part of the inventory development process and can be used for more disaggregated analyses. For example, soil emissions are reported in this edition of the USDA Inventory disaggregated at the MLRA level.

Emissions reported here do not always exactly match the emissions reported in the U.S. GHG Inventory (EPA 2015) for some source categories. There are two main reasons for this; first the EPA (2015) report partitions emissions by IPCC (2006) categories, while the USDA report attempts to logically designate emissions due to agricultural production systems. For example, EPA (2015) includes CO<sub>2</sub> emissions from lime and urea fertilizer applied to cropped and grazed soils in the land Use, Land-Use Change, and Forestry category, whereas emissions from these sources are included in the agricultural soils category in this report. Second, in some tables and figures EPA (2015) reports CO<sub>2</sub> emissions from





energy (e.g., electric power generation) partitioned as its own category, whereas in other figures and tables, energy emissions are allocated to the end-use economic sector. In contrast, this report consistently accounts for  $CO_2$  emissions from on-farm energy use in the agricultural sector. Note that this report does not account for  $CO_2$  emissions from indirect energy, which is defined as energy used off the farm to manufacture farm inputs such as synthetic fertilizers.

This report customizes the data from the U.S. GHG Inventory in a manner that is useful to agriculture and forestry producers and related industries, natural resource and agricultural professionals, as well as technical assistance providers, researchers, and policymakers. The information provided in this inventory will be useful in improving our understanding of the magnitude of GHG emissions by MLRA, State, region, and land use, and by crop, pasture, range, livestock, and forest management systems. The analyses presented in this report are the result of a collaborative process and direct contributions from EPA, USDA (Forest Service, Natural Resources Conservation Service, Agricultural Research Service, Office of Energy Policy and New Uses, and the Climate Change Program Office), and the Natural Resources Ecology Laboratory (NREL) of Colorado State University.

USDA administers a portfolio of conservation programs that have multiple environmental benefits including reductions in GHG emissions and increases in carbon sequestration. This and future USDA GHG Inventory reports will facilitate tracking of progress in promoting carbon sequestration and reducing GHG emissions through agriculture and forest management. The USDA GHG Inventory describes the role of agriculture and forestry in GHG emissions and sinks. Extensive and indepth emissions estimates are presented for all agricultural and forestry GHG sources and sinks for which internationally recognized methods are available. Where possible, emissions estimates are provided at MLRA, State and regional scales in addition to the national levels provided in the U.S. GHG Inventory. Emissions are categorized by additional information such as land ownership and management practices where possible. This report will help to:

- Quantify current levels of emissions and sinks at MLRA, State, regional, and national scales in agriculture and forestry,
- Identify activities that are driving GHG emissions and sinks and trends in these activities,
- Quantify the uncertainty associated with GHG emission and sink estimates.

#### 1.5 Overview of the Report Structure

The report provides detailed trends in agriculture and forestry GHG emissions and sinks, with information by source and sink at MLRA, State and regional levels. The report is structured mainly from a land use perspective, addressing livestock operations, croplands, and forests separately; but, it also includes a chapter on energy use. The livestock chapter inventories GHG emissions from livestock and livestock waste from confined livestock operations as well as pasture and range operations. The cropland agriculture chapter addresses emissions from cropland soil amendments, rice production, and residue burning, as well as carbon sequestration in agricultural soils. The forest chapter details carbon sequestration in forest biomass and soils, urban



trees, and wood products. Fluxes of  $CH_4$  and  $N_2O$  in forestry are not addressed since little information is currently available to develop estimates for these sources for forests. Qualitatively, forest soils are net CH<sub>4</sub> sinks in the United States, and soil N<sub>2</sub>O emissions are small because forests do not receive large N additions. The energy chapter provides information on CO<sub>2</sub> emissions from energy consumption on U.S. farms, covering GHG emissions from fuel use in livestock and

cropland agriculture. While the U.S. GHG Inventory provides estimates of GHG emissions from energy consumption in the production of fertilizer, this indirect source of agricultural GHG emissions is not covered in this report.

Chapters 2 through 5 present a summary of sources of GHG emissions and sinks in the land use or category of emissions covered by each chapter. A summary of GHG emissions at the national level is provided in each chapter, followed by more detailed descriptions of emissions by each source at national and sub-national scales where available. Methodologies used to estimate GHG emissions and quantify uncertainty are summarized. Changes from the previous edition of this inventory are indicated. Text describing the methods and uncertainty for some chapters is summarized from the U.S. GHG Inventory, with permission from the EPA.

#### 1.6 Summary of Changes and Additions for the Fourth Edition of the Inventory

Compared to previous editions, more sophisticated methodologies were used in this report to estimate GHG fluxes from all the major categories. When adjustments are made to existing methodologies (e.g., using new data sources), recalculations are made for the entire time series of estimates to ensure consistency. In addition to updating GHG flux estimates for 1990-2008 (based on current methodologies), estimates for 2009-2013 are also included.

Major changes impacting livestock emissions involved revising animal population estimates or diet assumptions, refining the models used to calculate emissions, using updated activity data, applying animal-specific emissions factors, and accounting for sources previously neglected (see Chapter 2 for details). Methane conversion rates, digestible energy values for cattle, and feedlot diets were also updated. As a result of these changes, emissions from enteric fermentation increased by approximately 17 percent on average compared to the previous inventory (USDA 2011). The biggest changes for emissions from managed livestock also relate to updated livestock population data and refined methodologies. Consequently, emission estimates from manure management systems (see Chapter 2, Table 2-3 for full list of these systems) have increased by approximately 18 percent compared to the previous inventory. There were several changes in calculations of N<sub>2</sub>O emissions from grazed soils which are generated primarily by DayCent model simulations.



The most important change was performing model simulations at National Resources Inventory (NRI) resolution (simulations were conducted at the county level for the previous inventory). In contrast to the previous edition which used model-generated estimates of N additions from grazing livestock waste, these were based on county-level animal population data to be consistent with activity data for emissions from enteric fermentation. Additional changes include using updated and refined model activity data, expanding the observational data sets used to quantify model uncertainty, and improving model algorithms to better represent the processes that control soil GHG fluxes. These changes resulted in an approximate 40-percent increase in grazed soil N<sub>2</sub>O emissions. The biggest changes that impacted estimates of carbon dioxide fluxes for grazed lands also involved using annual survey data from the NRI and DayCent model improvements. These changes resulted in an average annual decrease in estimated soil C sequestration of approximately 69 percent compared to the previous inventory.

There were several changes in calculations of cropland emissions compared to the previous edition of the inventory, mainly relating to DayCent model simulations for soil  $N_2O$  and  $CO_2$  emissions (see chapter 3 for details). The most important changes





were simulating more crops and using NRI for land cover information. In previous inventories, land cover was based on NASS statistics for areas of major crops (corn, soybeans, wheat, alfalfa hay, other hay, sorghum, and cotton) at the county level with region-specific assumptions regarding common cropping practices. In contrast, NRI data represent actual land use during any particular year. Another improvement relates to land area considered eligible to contribute to indirect N<sub>2</sub>O from NO<sub>3</sub> leached or runoff from cropped fields. Instead of assuming that nitrate leaching and runoff can occur anywhere, a criterion was used to designate lands where nitrate is susceptible to be leached or runoff into waterways, as suggested by IPCC (2006). This is based on observations that in semi-arid and arid areas, nitrate can be leached below the rooting zone but does not enter waterways because water tables in dry areas are deep or non-existent. Other changes are related to improvements in the DayCent model and uncertainty estimation. These changes resulted in an increase in N<sub>2</sub>O emissions of approximately 4 percent and a



#### SUGGESTED CITATION

Del Grosso, S.J., M. Baranski, M. Eve, and M. Reyes-Fox, 2016. Chapter 1: Introduction. In U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2013, Technical Bulletin No. 1943, United States Department of Agriculture, Office of the Chief Economist, Washington, DC. 137 pp. September 2016. Del Grosso S.J. and M. Baranski, Eds. decline in estimated C sequestration in mineral soils of 14 percent, relative to the previous inventory.

The estimates of C storage in forests and wood products reflect a substantial number of incremental changes in methods and data between EPA (2010) and EPA (2015) in terms of net stock change since 1990 (see chapter 4 for details). New annual inventory data for most States and adjustments to the identification of land area classified as forests included in the inventories have affected stock totals and changes. In addition, major changes in carbon conversion factors as applied to live and standing dead trees as well as to down dead wood and litter pools affected estimates as each update was implemented. Overall, these changes decreased overall forest and wood product C stock estimates by 15 percent and C stock changes by 7 percent relative to the previous inventory.

Aggregating across all sources and sinks, net emissions are approximately a 30-percent smaller

> sink than reported in the previous inventory. Although some of the changes compared to the previous inventory may appear to be large, they are within the calculated uncertainty ranges. Because of the relatively large uncertainty associated with GHG fluxes for agricultural and forestry production systems, it is difficult to predict the magnitude of changes that will be reported in subsequent inventories. However, both the observational measurements that are used to test and constrain the methods and models used. and the estimates derived from the methods and models, should improve as more extensive observational data sets become available. Similarly, availability of more refined model input data sets should improve the estimates reported in future editions of this volume. The individual chapters provide details regarding expected improvements.

#### 1.7 References

Del Grosso, S.J., A.R. Mosier, W.J. Parton, and D.S. Ojima (2005). DAYCENT model analysis of past and contemporary soil  $N_2O$  and net greenhouse gas flux for major crops in the USA. Soil Tillage and Research, 83:9-24. doi:10.1016/j.still.2005.02.007.

Dlugokencky, E.J., R.C. Myers, P.M. Lang, K.A. Masarie, A.M. Crotwell, K.W. Thoning, B.D. Hall, J.W. Elkins, and L.P. Steele (2005). Conversion of NOAA atmospheric dry air CH<sub>4</sub> mole fractions to a gravimetrically prepared standard scale. Journal of Geophysical Research, 110:(D)18306. doi:10.1029/2005JD006035.

EPA (2010). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2008. U.S. Environmental Protection Agency, Office of Atmospheric Programs, Washington, D.C. Available online at <http://www.epa.gov/climatechange/emissions/usinventoryreport. html>.

EPA (2015). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013. Environmental Protection Agency, Office of Atmospheric Programs, Washington D.C. April, 2015. Available at http://www.epa.gov/climatechange/ghgemissions/ usinventoryreport.html.

Eve, M., D. Pape, M. Flugge, R. Steele, D. Man, M. Riley-Gilbert, and S. Biggar, Eds. (2014). Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory. Technical Bulletin Number 1939, Office of the Chief Economist, United States Department of Agriculture, Washington, DC. 606 pages. July 2014.

IPCC (2001). Climate change 2001: the scientific basis, contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson, editors. Cambridge University Press, Cambridge, UK.

IPCC (2006). 2006 IPCC guidelines for national greenhouse gas inventories, vol. 4: agriculture, forestry and other land use. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, editors. Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme, Technical Support Unit, Kanagawa, Japan. Available online at < http://www.ipcc-nggip.iges.or.jp>.

IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press. Cambridge, United Kingdom 996 pp.

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K., Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. Keeling, C.D. and T.P. Whorf (2005). Atmospheric CO<sub>2</sub> records from sites in the SIO air sampling network, in Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN.

Kimble, J.M., L.S. Heath, R.A. Birdsey, and R. Lal (2003). The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, Boca Raton, FL.

McKinley, D. C., Ryan, M. G., Birdsey, R. A., Giardina, C. P., Harmon, M. E., Heath, L. S., ... & Skog, K. E. (2011). A synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications, 21(6), 1902-1924.

Prinn, R.G., R.F. Weiss, P.J. Fraser, P.G. Simmonds, D.M. Cunnold, F.N. Alyea, S. O'Doherty, P. Salameh, B.R. Miller, J. Huang, R.H.J. Wang, D.E. Hartley, C. Harth, L.P. Steele, G. Sturrock, P.M. Midgely, and A. McCulloch (2000). A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. Journal of Geophysical Research, 105:17751-17792.

Robertson, G.P., E.A. Paul, and R.R. Harwood (2000). Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science, 289:1922-1925.

USDA (2004). U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2001. Technical bulletin 1907. Office of the Chief Economist, United States Department of Agriculture, Washington, D.C. Available online at <http://www.usda.gov/oce/gcpo>.

USDA (2008). U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2005. Del Grosso, S.J. and M.K. Walsh (Eds.) Technical bulletin 1921. Office of the Chief Economist, United States Department of Agriculture, Washington, D.C. Available online at http://www.usda.gov/oce/global\_change/ AFGGInventory1990\_2005.htm.

USDA (2011). U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2008. Del Grosso, S.J. and M.K. Walsh (Eds.) T echnical bulletin 1930. Office of the Chief Economist, United States Department of Agriculture, Washington, D.C. Available online at http://www.usda.gov/oce/climate\_change/AFGG\_ Inventory/USDA\_GHG\_Inv\_1990-2008\_June2011.pdf

Zhang, F., Chen, J. M., Pan, Y., Birdsey, R. A., Shen, S., Ju, W., & He, L. (2012). Attributing carbon changes in conterminous US forests to disturbance and non-disturbance factors from 1901 to 2010. Journal of Geophysical Research: Biogeosciences (2005– 2012), 117(G2).







Chapter 2 Download data: http://dx.doi.org/10.15482/USDA.ADC/1264149

### **Livestock and Grazed Land Emissions**

#### 2.1 Summary of U.S. Greenhouse Gas Emissions From Livestock

A total of 342 MMT CO<sub>2</sub> eq. of greenhouse gases (GHGs) were emitted from livestock, managed livestock waste, and grazed land in 2013 (Table 2-1, Figure 2-1). This represents about 66 percent of total emissions from the agricultural sector, which totaled 516 MMT CO<sub>2</sub> eq. (EPA 2015). Compared to the baseline year (1990), emissions from livestock sources were about 18 percent higher in 2013. There are three main reasons for this increase: methane (CH<sub>4</sub>) emissions from managed livestock waste increased, nitrous oxide (N<sub>2</sub>O) emissions from grazed lands increased, and the CO<sub>2</sub> sink strength of grazed lands decreased. The 95 percent confidence interval for 2013 was estimated to lie between 293 and 407 MMT CO<sub>2</sub> eq. (Table 2-1).

#### Table 2-1 Greenhouse Gas Emission Estimates and Uncertainty Intervals in 2013

|                                       |          | Lower   | Upper |
|---------------------------------------|----------|---------|-------|
|                                       | Estimate | Bound   | Bound |
| Source                                |          | MMT CO2 | eq.   |
| CH <sub>4</sub> enteric fermentation  | 165      | 146     | 194   |
| CH4 managed waste + grazed land       | 61       | 50      | 74    |
| N2O managed waste                     | 17       | 15      | 21    |
| N <sub>2</sub> O grazed land          | 96       | 72      | 138   |
| CO2 grazed land remaining grazed land | 12       | (24)    | 48    |
| CO2 land converted to grazed land     | (9)      | (18)    | 1     |
| Total                                 | 342      | 293     | 407   |

Note: MMT  $\mathrm{CO}_2$  eq. is million metric tons carbon dioxide equivalent.

Enteric fermentation contributed to a little less than half (165 MMT  $CO_2$  eq.) of all emissions associated with livestock production, while soils from grazed lands (102 MMT  $CO_2$  eq.) and managed waste (76 MMT  $CO_2$  eq.) accounted for approximately 30 and 22 percent, respectively, of the total livestock emissions. All of the emissions from enteric fermentation and about 77 percent of emissions from managed livestock waste were in the form of  $CH_4$ . Of the emissions from grazed lands, 94 percent were in the form of N<sub>2</sub>O from soils (Table 2-2). Soils in grazed lands do not often experience the anaerobic conditions required for  $CH_4$  production to exceed  $CH_4$  uptake. However, a small portion of manure from grazing animals is converted to  $CH_4$  during the short period of time when paddies are drying. Although lands converted to grazing are estimated to be a C sink, this is balanced by long-term grazed lands being a C source in aggregate. Soils in grazed lands are estimated to be roughly  $CO_2$  neutral, emitting an estimated net 3.3 MMT  $CO_2$  eq. in 2013 (Table 2-2). Note that C storage in biomass is not accounted and the uncertainty ranges for both grazed land remaining grazed land and land converted to grazed land have lower bounds indicating sequestration and upper bounds indicating emissions (Table 2-1). Carbon (C) storage in grassland biomass is not accounted because biomass in these systems overturns quickly relative to soil C and does not contribute much to long term sequestration.

The largest total emissions associated with livestock production were from Texas and California (Map 2-1). Emissions were high in Texas primarily because of the large numbers of beef cattle, while dairy cattle emissions are responsible for most emissions in California. Emissions were also relatively high in Idaho, Montana, South Dakota, Nebraska, Colorado, Kansas, Oklahoma, Wisconsin, Iowa, and Missouri.

Beef cattle contributed the largest fraction (63 percent) of GHG emissions from livestock in 2013, with the majority of emissions in the form of  $CH_4$ 



**Figure 2-1 Greenhouse Gas Emissions from Livestock in 2013** ( $CH_4$  is methane;  $N_2O$  is nitrous oxide;  $CO_2$  is carbon dioxide. MMT  $CO_2$  eq. is million metric tons of carbon dioxide equivalent)

#### Map 2-1 Greenhouse Gas Emissions from Livestock Production in 2013





from enteric fermentation and  $N_2O$  from grazed land soils (Figure 2-1, Table 2-2). Dairy cattle were the second-largest livestock source of GHG emissions (25 percent), primarily  $CH_4$  from enteric fermentation and managed waste. The third-largest GHG source from livestock was swine (8 percent), nearly all of which was  $CH_4$  from waste. Horses, mules, goats, sheep, and bison caused relatively small GHG emissions when compared to other animal groups, because populations of these types are relatively small. Poultry have relatively low emissions despite comprising the largest livestock group, because this group does not produce enteric waste.

Livestock contribute GHGs to the atmosphere both directly and indirectly. Livestock emit  $CH_4$  directly as a byproduct of digestion through a process called enteric fermentation. In addition, livestock manure and urine (waste) cause  $CH_4$  and  $N_2O$  emissions to

Table 2-2 Greenhouse Gas Emissions by Livestock Category and Source in 2013

|                 | Enteric<br>Fermentation | Managed Livestock<br>Waste |        | G          | Total  |                 |        |
|-----------------|-------------------------|----------------------------|--------|------------|--------|-----------------|--------|
|                 | CH <sub>4</sub>         | CH <sub>4</sub>            | $N_2O$ | $N_2O^1$   | $CH_4$ | CO <sub>2</sub> |        |
| Animal Type     |                         |                            | MMT    | $CO_2 eq.$ |        |                 |        |
| Beef Cattle     | 117.10                  | 0.62                       | 7.65   | 85.16      | 2.38   | 2.95            | 215.87 |
| Dairy Cattle    | 41.59                   | 31.66                      | 5.74   | 5.06       | 0.11   | 0.18            | 84.34  |
| Swine           | 2.47                    | 23.05                      | 1.89   | 0.24       | 0.01   | 0.01            | 27.66  |
| Horses          | 1.59                    | 0.02                       | 0.12   | 3.44       | 0.21   | 0.12            | 5.49   |
| Poultry         | NA                      | 3.22                       | 1.58   | 0.17       | 0.01   | 0.01            | 4.98   |
| Sheep           | 1.07                    | 0.03                       | 0.31   | 0.80       | 0.04   | 0.03            | 2.28   |
| Goats           | 0.31                    | 0.00                       | 0.02   | 0.64       | 0.02   | 0.02            | 1.02   |
| American Bison  | 0.32                    | NA                         | NA     | 0.32       | 0.01   | 0.01            | 0.66   |
| Mules and Asses | 0.07                    | 0.00                       | 0.00   | 0.10       | 0.01   | 0.00            | 0.19   |
| Total           | 164.53                  | 58.61                      | 17.3   | 95.93      | 2.78   | 3.33            | 342.49 |

Note: Methane emissions from manure deposited on grasslands is not partitioned by animal type. MMT CO<sub>2</sub> eq. is million metric tons carbon dioxide equivalent. CH<sub>4</sub> is methane; N<sub>2</sub>O is nitrous oxide; CO<sub>2</sub> is carbon dioxide. "Includes direct and indirect emissions. the atmosphere through increased decomposition and nitrification/denitrification. Managed waste that is collected and stored emits  $CH_4$  and  $N_2O$  throughout its lifecycle.

Grazing animals influence soil processes (e.g., nitrification/denitrification) that result in N<sub>2</sub>O emissions from the nitrogen (N) in their waste. Forage legumes on grazed lands also contribute to N<sub>2</sub>O emissions because when legumes fix N from the atmosphere, that N can become mineralized in the soil and contribute to nitrification and denitrification. Grazed lands can also act as a source or sink for atmospheric carbon dioxide (CO<sub>2</sub>), depending on whether C inputs to the soil—from plant residues and manure-exceed C losses from decomposition of soil organic matter. Soils that have been historically cropped using conventional tillage are often depleted of C because tillage disturbs soil aggregates and warms soil, which increases decomposition rates. Carbon-depleted soils can act as CO<sub>2</sub> sinks when converted to grazing land, because grazed soils are typically not plowed. Factors such as grazing intensity and weather patterns also influence net CO<sub>2</sub> fluxes, so a particular parcel of grazed land may be a net source or sink of C during any given year.

This chapter provides national and State-level data on  $CH_4$  emissions from enteric fermentation,  $CH_4$  and  $N_2O$  emissions from managed livestock waste, and  $CO_2$ ,  $N_2O$ , and  $CH_4$  fluxes for grazed lands. Emissions associated with waste applied to grazed land are included in this chapter, while  $N_2O$ 

emissions from managed livestock waste applied to cropped soils are included in the Cropland Agriculture chapter (Chapter 3). State-level livestock population data also are presented in this chapter because GHG emissions from livestock are related to livestock population sizes.

#### 2.2 Sources of Greenhouse Gas Emissions From Livestock

The mechanisms and important factors that generate GHG fluxes from livestock, waste management, and grazed lands are detailed below.

#### 2.2.1 Enteric Fermentation

Enteric fermentation is a normal digestive process in animals where anaerobic microbial populations in the digestive tract ferment food and produce CH<sub>4</sub> gas as a byproduct. Methane is then emitted from the animal to the atmosphere through exhaling or eructation. Ruminant livestock-including cattle, sheep, and goats-have greater rates of enteric fermentation because of their unique digestive system, which includes a large rumen or fore-stomach where enteric fermentation takes place. Non-ruminant livestock such as swine, horses, and mules produce less CH<sub>4</sub> because enteric fermentation takes place in the large intestine, which has a smaller capacity to produce CH<sub>4</sub> than the rumen. The energy content and quantity of animal feed also affect the amount of CH<sub>4</sub> produced in enteric fermentation, with lower quality and higher quantities of feed causing greater emissions. Low quality feeds, such as dormant grasses and crop residues, are relatively low in protein and high in fiber which reduces digestibility and enhances CH<sub>4</sub> production.

#### 2.2.2 Managed Livestock Waste

Livestock waste can be managed in storage and treatment systems or spread on fields in lieu of long-term storage. Alternatively, livestock waste is termed unmanaged when it is deposited directly on grazed lands and not transported. Many livestock producers in the United States manage livestock waste in systems such as solid storage, dry lots, liquid/slurry storage, deep pit storage, and anaerobic lagoons. Table 2-3 (adapted from EPA 2015) provides descriptions of managed and unmanaged pathways for livestock waste, indicating the relative impacts of different pathways on GHG emissions. Sometimes livestock waste that is stored and treated is subsequently applied as a nutrient amendment to agricultural soils. Greenhouse gas emissions from treated waste applied to cropped soils as a nutrient

amendment are discussed in the next chapter along with GHG emissions from other nutrient amendments for crop production.

The magnitude of CH<sub>4</sub> and N<sub>2</sub>O emissions from managed livestock waste depends in large part on storage system and environmental conditions. Methane is emitted under anaerobic conditions, when oxygen is not available to the bacteria that decompose waste. Storage in ponds, tanks, or pits such as those that are coupled with liquid/ slurry flushing systems often promote anaerobic conditions (i.e., where oxygen is not available and CH<sub>4</sub> is produced), whereas solid waste stored in stacks or shallow dry pits tends to provide aerobic conditions (i.e., where oxygen is available and little or no CH<sub>4</sub> is produced). However, moist conditions (which are a function of rainfall and humidity) can promote CH<sub>4</sub> production in non-liquid-based manure systems. High temperatures generally accelerate the rate of decomposition of organic compounds in waste, increasing CH<sub>4</sub> emissions under anaerobic conditions. In addition, longer residency time in a storage system can increase CH<sub>4</sub> production, and added moisture, particularly in solid storage systems that normally experience aerobic conditions, can amplify CH<sub>4</sub> emissions.

While storage system and environmental conditions are important factors affecting CH<sub>4</sub> emissions from the management of livestock waste, diet and feed characteristics are also influential. Livestock feed refers to the mixture of grains, hay, and byproducts from processed foods that is fed to animals at feedlots and as supplemental feed for grazing animals, while diet includes the mixture of plants that animals graze. Livestock feed, diet, and growth rates affect both the amount and quality of manure. Not only do greater amounts of manure lead to higher CH<sub>4</sub> production, but higher energy feed also produces manure with more volatile solids, increasing the substrate from which CH<sub>4</sub> is produced. However, this impact is somewhat offset because some higher energy feeds are more digestible than lower quality forages, and thus less waste is excreted.

The production of  $N_2O$  from managed livestock waste depends on the composition of the waste, the type of bacteria involved, and the conditions following excretion. For  $N_2O$  emissions to occur, the waste must first be handled aerobically where ammonia (NH<sub>3</sub>) or organic N is converted to nitrates (NO<sub>3</sub>) and nitrites (NO<sub>2</sub>) (nitrification), and if conditions become sufficiently anaerobic, NO<sub>3</sub> and NO<sub>2</sub> can be denitrified, i.e., reduced to nitrogen oxides and nitrogen gas (N<sub>2</sub>) (Groffman et al. 2000; Archibeque et al. 2012). Nitrous oxide is produced



#### Table 2-3 Descriptions of Livestock Waste Deposition and Storage Pathways

| Manure Management System | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pasture/Range/Paddock    | Manure and urine from pasture and range grazing animals are deposited directly onto the soil (unmanaged).                                                                                                                                                                                                                                                                                                                                                            |
| Daily Spread             | Manure and urine are routinely collected and spread on fields within 24 hours of excretion; there is little or no storage of the manure/urine before it is applied to soils. Nitrous oxide emissions are assumed to be zero during the transport/storage phase but not after the waste has been applied to soils.                                                                                                                                                    |
| Solid Storage            | Manure and urine (with or without litter) are collected by some means and placed under long-term bulk storage.                                                                                                                                                                                                                                                                                                                                                       |
| Dry Lot                  | Manure and urine are deposited directly onto a paved or unpaved open containment<br>area where the manure is allowed to dry and it is periodically removed (after<br>removal, it is sometime spread onto fields).                                                                                                                                                                                                                                                    |
| Liquid/Slurry            | Manure is stored as excreted or with some minimal addition of water to facilitate handling and is stored in either tanks or earthen ponds, usually for periods less than 1 year.                                                                                                                                                                                                                                                                                     |
| Anaerobic Lagoon         | Uncovered anaerobic lagoons are designed and operated to combine waste<br>stabilization and storage. Lagoon supernatant is usually used to remove manure from<br>the associated confinement facilities to the lagoon. Anaerobic lagoons are designed<br>with varying lengths of storage (up to a year or greater), depending on the climate<br>region, the volatile solids loading rate, and other operational factors, and must be<br>cleaned out every 5-15 years. |
| Anaerobic Digester       | Animal excrement with or without straw is collected and anaerobically digested in a large containment vessel (complete mix or plug flow digester) or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO <sub>2</sub> and CH <sub>4</sub> , which are captured and flared or used as a fuel.                                                                                   |
| Deep Pit                 | Combined storage of manure and urine in pits (up to one year) below livestock confinements. Little to no water added to manure.                                                                                                                                                                                                                                                                                                                                      |
| Poultry With Litter      | Enclosed poultry houses use bedding derived from wood shavings, chopped straw, or other products depending on availability. The bedding absorbs moisture and dilutes manure. Litter is cleaned out once a year. This system is used for breeder flocks and meat chickens (broilers) and other fowl.                                                                                                                                                                  |
| Poultry Without Litter   | In high-rise cages or scrape-out/belt systems, manure is excreted onto the floor below<br>with no bedding to absorb moisture. The ventilation system dries the manure as it is<br>stored. This high rise system is a form of passive windrow composting.                                                                                                                                                                                                             |

Adapted from IPCC 2006.

as an intermediate product of both nitrification and denitrification and can be directly emitted from soil as a result of both of these processes. These emissions are most likely to occur in dry-waste handling systems that have aerobic conditions but that also contain pockets of anaerobic conditions due to high water content and high oxygen gas ( $O_2$ ) demand from decomposition. For example, waste in dry lots is deposited on soil, oxidized to  $NO_2$  and  $NO_3$ , and encounters anaerobic conditions following precipitation events that increase water content, enhance decomposition, and deplete the supply of  $O_2$ .

Managed livestock waste can also contribute to indirect  $N_2O$  emissions. Indirect emissions result from N that was volatilized or leached/runoff from the manure management system in a form other than  $N_2O$ , and was then converted to  $N_2O$  offsite. These sources of indirect  $N_2O$  emission from animal waste are from NH<sub>3</sub> volatilization and NO<sub>3</sub> runoff into ground or surface waters. The gaseous losses of NH<sub>3</sub> to the atmosphere can then be deposited to the soil and converted to  $N_2O$  by nitrification. The NO<sub>3</sub> runoff into waterways can be converted to  $N_2O$ by aquatic denitrification. Note that in addition to  $NH_3$  losses, nitrogen oxides ( $NO_x$ ) can contribute to volatilization but because there are no quantified estimates available, losses due to volatilization are based solely on  $NH_3$  loss factors. Similarly, leached  $NO_3$  can contribute to indirect  $N_2O$ , but because little is known about leaching from manure management systems, only emissions associated with runoff are calculated.

#### 2.2.3 Grazed Lands

Nitrous oxide from soils is the primary GHG associated with grazed lands. Grazed lands contribute to N<sub>2</sub>O emissions by adding N to soils from animal wastes, forage legumes, and fertilizer additions. Legumes fix atmospheric N<sub>2</sub> into forms that can be used by plants and by soil microbes. Nitrogen from manure, legumes, and fertilizers is cycled into the soil and can provide substrates for nitrification and denitrification. Nitrous oxide is a byproduct of this cycle; thus, more N added to soils yields more N<sub>2</sub>O released to the atmosphere. A portion of the N cycled within the plant-animal-soil system volatilizes to the atmosphere in various gaseous forms and is eventually re-deposited onto the soils where it can contribute to indirect N<sub>2</sub>O emissions. Some N in the form of NO<sub>2</sub> can leach into groundwater and surface runoff, undergo denitrification, and contribute to indirect N<sub>2</sub>O emissions. In addition to N additions, weather, soil type, grazing intensity, and other factors influence emissions from grazed lands.

Manure deposited on grazed lands also produces CH<sub>4</sub> emissions. Methane emissions from this source are relatively small, less than 5 percent of total grazed land GHG emissions, because of the predominately aerobic conditions that exist on most pastures and ranges.

Grazed lands can be emission sources or net sinks for  $CO_2$ . Typically, cropland that has recently been converted to grazed land stores  $CO_2$  from the atmosphere in the form of soil organic carbon. But after sufficient time, soil organic C reaches a steady state, given consistent weather patterns. Long-term soil C levels are sensitive to climate change, and soils that were previously sinks can revert to being sources of  $CO_2$ . Note that current methodology does not include  $CO_2$  fluxes resulting from growing (or senescing) biomass nor  $CO_2$  emissions from grassland fires.

#### 2.3 U.S. Livestock Populations

Greenhouse gas emissions from livestock are related to population size. Livestock population data are collected annually by USDA's National Agricultural Statistics Service (NASS). Those data are an input into the GHG estimates from livestock in the U.S. GHG Inventory.

Beef and dairy cattle, swine, sheep, goats, poultry, and horses are raised throughout the United States. Detailed livestock population numbers for each State in 2013 are provided in Appendix Table A-1. Appendix Table A-2 shows total national livestock population sizes from 1990 to 2013 by livestock categories. Trends for beef cattle, dairy cattle, and swine are described in more detail below because of their relatively high population numbers and consequently high contributions to GHG emissions.

Texas raised by far the most beef cattle, at over 11 million head in 2013 (Appendix Table A-1). Kansas, Nebraska, and Oklahoma each raised from 4 to 7 million head of beef cattle, while several other States raised ~2 million head. Fewer dairy cattle than beef cattle are raised currently in the United States. Dairy cattle populations were highest in California and Wisconsin (3.4 million and 2.6 million, respectively) (Appendix Table A-1). New York, Idaho, Pennsylvania, and Minnesota had the next largest populations of dairy cattle, ranging from 982,000 to 1.2 million head in each State. Most States had fewer than 100,000 head of dairy cattle. Iowa was the largest swine producer, with 20 million head in 2013 (Appendix Table A-1). North Carolina housed the second-largest swine population at nearly 9 million head. Minnesota, Illinois, and Indiana also have sizeable swine populations.

#### 2.4 Enteric Fermentation

Just less than half (48 percent) of emissions associated with livestock production were from  $CH_4$  produced by enteric fermentation. Cattle were responsible for the majority of enteric  $CH_4$  emissions (71 percent) in 2013 (Table 2-2). Texas (19.3 MMT  $CO_2$  eq.) and California (11.3 MMT  $CO_2$  eq.) had the largest  $CH_4$  emissions from enteric fermentation for beef cattle and dairy cows in 2013 (Map 2-2, Appendix Table A-3). These emissions were largely tied to the sizable populations of cattle in both States. However, enteric fermentation emissions in Texas were mostly from beef cattle, whereas in California they were derived mostly from dairy cattle (Appendix Table A-3). State-level data for non-cattle



**Map 2-2 Methane Emissions from Enteric Fermentation in 2013** (CH<sub>4</sub> is methane. Tg CO<sub>2</sub> eq. is teragrams of carbon dioxide equivalent)





livestock (i.e., swine, sheep, goats, mules, bison, and horses) were not generated due to the relatively low contributions of these animals to total enteric emissions. Central, Northern Plains, and some Great Lakes States also had relatively high  $CH_4$  emissions from enteric fermentation, ranging between 3 and 10 MMT  $CO_2$  eq. per State in 2013 (Appendix Table A-3). Emissions tended to be lower from some States in the northeast, southeast, and the desert southwest, mainly because cattle populations are low in these States.

Annual emissions of  $CH_4$  from enteric fermentation fluctuated by approximately 14 MMT  $CO_2$  eq. between 1990 and 2013 (Table 2-4). Emissions peaked in 1995, then decreased by about 10 MMT  $CO_2$  eq. by 2005, then rose slightly by 2010. In recent years,  $CH_4$  emissions from enteric fermentation have declined. Overall, by 2013,  $CH_4$  emissions from

Table 2-4 U.S. Methane Emissions from Enteric Fermentation in 1990, 1995, 2000, 2005, 2010-2013

| Animal Type     | $MMT CO_2 eq.$ |       |       |       |       |       |       |       |
|-----------------|----------------|-------|-------|-------|-------|-------|-------|-------|
|                 | 1990           | 1995  | 2000  | 2005  | 2010  | 2011  | 2012  | 2013  |
| Beef Cattle     | 119.1          | 135.5 | 126.7 | 125.2 | 124.4 | 121.7 | 118.7 | 117.1 |
| Dairy Cattle    | 39.4           | 37.5  | 38.0  | 37.6  | 40.7  | 41.1  | 41.7  | 41.6  |
| Sheep           | 2.3            | 1.8   | 1.4   | 1.2   | 1.1   | 1.1   | 1.1   | 1.1   |
| Horses          | 1.0            | 1.2   | 1.5   | 1.7   | 1.7   | 1.7   | 1.6   | 1.6   |
| Swine           | 2.0            | 2.2   | 2.2   | 2.3   | 2.4   | 2.5   | 2.5   | 2.5   |
| Goats           | 0.3            | 0.3   | 0.3   | 0.4   | 0.4   | 0.3   | 0.3   | 0.3   |
| American Bison  | 0.1            | 0.2   | 0.4   | 0.4   | 0.4   | 0.3   | 0.3   | 0.3   |
| Mules and Asses | 0.0            | 0.0   | 0.0   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   |
| Total           | 164.2          | 178.7 | 170.6 | 168.9 | 171.1 | 168.7 | 166.3 | 164.5 |

Note: MMT CO2 eq. is million metric tons carbon dioxide equivalent

enteric fermentation increased by over 0.2 percent compared to 1990 levels. Emissions increased slightly even though animal numbers of beef cattle (the major contributor) decreased (Appendix Table A-2) because the amount of feed consumed per animal increased. State-level emissions for 1990, 1995, 2000 and 2005-2013 are presented in Appendix Table A-4.

#### 2.4.1 Methods for Estimating Methane Emissions From Enteric Fermentation

The official U.S. GHG Inventory estimates for enteric fermentation (as well as those for managed waste and grazed soils) are calculated according to the methodological framework provided by the Intergovernmental Panel on Climate Change (IPCC) for preparing national GHG inventories. The IPCC guidance is organized into a hierarchical, tiered analytical structure, in which higher tiers correspond to more complex and detailed methodologies. The methods detailed below correspond to both Tier 1 and Tier 2 approaches. With the permission of EPA, Annex 3.10 from the official U.S. GHG Inventory is summarized below. Methane emissions from enteric fermentation were estimated for seven livestock categories: cattle, horses, sheep, swine, goats, American bison, and mules. Emissions from cattle represent the majority of U.S. emissions; consequently, the more detailed IPCC Tier 2 methodology was used to estimate emissions from cattle and the IPCC Tier 1 methodology was used to estimate emissions from the other types of livestock.

2.4.1.1 Estimating Methane Emissions From Cattle This section describes the process used to estimate enteric fermentation emissions of CH<sub>4</sub> from cattle on a regional basis. A Cattle Enteric Fermentation Model (CEFM) based on recommendations provided in IPCC (2006, 1997) was developed that uses information on population, energy requirements, digestible energy, and the fraction of energy converted to methane to estimate CH<sub>4</sub> emissions. The emission estimation methodology consists of the following three steps: (1) characterize the cattle population to account for cattle population categories with different emissions profiles; (2) characterize cattle diets to generate information needed to estimate emissions factors; and (3) estimate emissions using these data and the IPCC Tier 2 equations.

#### Step 1: Characterize U.S. Cattle Population

Calf birth rates, population statistics, feedlot placement information, and slaughter weight data were used to create a transition matrix that models cohorts of individual animal types and their specific emission profiles. This level of detail accounts for the variability in CH<sub>4</sub> emissions associated with each life stage. Given that the time in which cattle can be in a stage can be less than 1 year (e.g., beef calves are weaned at 4 to 6 months or later), the stages are modeled on a per-month basis. The type of cattle use also impacts CH<sub>4</sub> emissions (e.g., beef versus dairy). Consequently, cattle life stages were modeled for several categories of dairy and beef cattle. These categories are listed in Appendix Table A-5. The key variables tracked for each of these cattle population categories<sup>1</sup> includes calving rates, pregnancy and lactation (Appendix Table A-6), average weights and weight gains (Appendix Table A-7), feedlot placements (Appendix Table A-8), death rates, number of animals per category each month, and animal characteristics (i.e., age, gender, etc.) data.

Cattle population data were taken from USDA NASS (National Agricultural Statistics Service) (Appendix Table A-2). USDA NASS publishes monthly, annual, and multi-year livestock population and production estimates. Multi-year reports include revisions to earlier published data. Cattle and calf populations, feedlot placement statistics (e.g., number of animals placed in feedlots by weight class), slaughter numbers, beef calf birth percentages, and lactation data were obtained from NASS QuickStats database (USDA 2013a).

#### Step 2: Characterize U.S. Cattle Diets

Data were collected on diets considered representative of different regions to support development of digestible energy (DE), the percent of gross energy intake digestible to the animal, and  $CH_4$  conversion rate ( $Y_m$ ), the fraction of gross energy converted to CH<sub>4</sub>, values for each of the cattle population categories. For both grazing animals and animals being fed mixed rations, representative regional diets were estimated using information collected from State livestock specialists and from USDA APHIS VS (USDA 2010). The data for each of the diets (e.g., proportions of different feed constituents, such as hay or grains) were used to determine chemical composition for use in estimating DE and Y<sub>m</sub> for each animal type. Region- and cattle-type-specific estimates for DE and Y<sub>m</sub> were developed for the United States (Appendix Tables A-9 and A-10). Regions in the enteric fermentation model are defined in Appendix Table A-11, A-12. Additional detail on the regional diet characterization is provided in EPA (2015).

**Step 3: Estimate Methane Emissions From Cattle** Emissions were estimated in three steps: (a) determine gross energy intake using the IPCC (2006) Tier 2 equations, (b) determine an emissions factor using the gross energy values and other factors, and (c) sum the daily emissions for each animal type. The necessary data values include:

- Body weight (kg)
- Weight gain (kg/day)
- Net energy for activity (Mj/day)
- Standard reference weight (dairy = 1,324 lbs; beef = 1,195 lbs)
- Milk production (kg/day)
- Milk fat (% of fat in milk = 4)
- Pregnancy (% of population that is pregnant)
- DE (% of gross energy intake digestible)
- $Y_{m}$  (the fraction of gross energy converted to  $CH_{a}$ )
- Population

This process was repeated for each month, and the totals for each subcategory were summed to achieve an emissions estimate for the entire year. The estimates for each of the 12 subcategories of cattle are listed in Appendix Table A-13. The  $CH_4$ emissions for each subcategory were then summed to estimate total emissions from beef cattle and dairy cattle for the entire year. The cattle emissions calculation model estimates emissions on a regional scale. Individual State-level estimates were developed from these regional estimates using the proportion of each cattle population subcategory in the State relative to the population in the region.



<sup>&</sup>lt;sup>1</sup> Except bulls. Only end-of-year census population statistics and a national emission factor are used to estimate CH4 emissions from the bull population.



2.4.1.2 Emission Estimates From Other Livestock Emissions other (non-cattle) livestock used the default Tier 1 emission factor recommended by IPCC (2006). Other livestock population data (sheep, goats, swine, horses, mules, poultry, and American bison) were taken from USDA NASS (2014) or earlier census data. Appendix Table A-2 shows the population data for all livestock that were used for estimating all livestock-related emissions. For each animal category, the USDA publishes monthly, annual, and multi-year livestock population and production estimates. Multi-year reports include revisions to earlier published data. Recent reports were obtained from the USDA Economics and Statistics System, while historical data were downloaded from USDA NASS. Nationallevel emission calculations for other livestock were developed from national population totals. Appendix Table A-14 shows the emission factors used for these other livestock types.

#### 2.4.2 Uncertainty in Estimating Methane **Emissions From Enteric Fermentation**

The following discussion of uncertainty in the enteric fermentation estimates is from the U.S. GHG Inventory (EPA 2015) and reproduced here with permission from EPA.

Uncertainty is estimated using an IPCCrecommended Tier 2 method based on the Monte Carlo Stochastic Simulation technique. Emission factors and animal population data are the primary sources of uncertainty in estimating CH<sub>4</sub> emissions from enteric fermentation. A total of 185 input variables were identified as key input variables for uncertainty analysis (e.g., estimates of births by month, weight gain of animals by age class, and placement of animals into feedlots based on placement statistics and slaughter weight data). The uncertainty associated with these input variables is  $\pm 10$  percent or lower. However, the uncertainty for many of the emission factors is over  $\pm 20$  percent. The overall 95-percent confidence interval around the estimate of 165 MMT CO<sub>2</sub> eq. ranges from 146 to 194 MMT CO<sub>2</sub> eq. (Table 2-1).

#### Changes Compared to the 3rd edition of 2.4.3 the USDA GHG Report

There were several modifications made to the emissions estimates for this edition of the USDA GHG report relative to the previous inventory (USDA 2011). Most of the changes involved revising estimates of animal populations, average weights, and diet assumptions, or refining the models used

to calculate emissions. American bison, which were previously excluded, are now included in the inventory. Enteric fermentation emissions from bull populations are now calculated with a Tier 2, instead of Tier 1, methodology. As a result of the changes outlined above, the amount of emissions estimated for enteric fermentation increased by approximately 17 percent on average compared to the previous inventory (USDA 2011).

#### 2.5 Managed Livestock Waste

Greenhouse gas emissions from managed livestock waste are composed of CH<sub>4</sub> and N<sub>2</sub>O from livestock waste storage, transport, and treatment and CH<sub>4</sub> emissions from the daily spread of livestock waste. Emissions from these sources are discussed below, with estimates disaggregated spatially and by livestock category where possible. Methane was the predominant GHG emitted from managed livestock waste in 2013, accounting for 78 percent of 78 MMT  $CO_2$  eq. total emissions from this source (Table 2-5). The remaining 22 percent of GHG emissions from managed livestock waste was N<sub>2</sub>O. Dairy cattle and swine were responsible for 37 and 25 percent of total managed waste emissions, respectively (Figure 2-2). Poultry (5 percent) and beef cattle (8 percent) were also important sources in 2013. For beef cattle, N<sub>2</sub>O was the predominate form (93 percent) of waste emissions. Over time, emissions from managed waste increased by 14 percent from 1990 to 2013 (Figure 2-3). Most of the increase was from higher  $CH_4$ emissions due to the trend of storing more waste in liquid systems and anaerobic lagoons which facilitate CH<sub>4</sub> production.

While beef cattle contribute the largest overall emissions from all livestock (Table 2-2, Figure 2-1), emissions from beef-cattle managed waste are relatively small (Figure 2-2) because most waste generated by beef cattle is unmanaged. Emissions from beef-cattle managed manure changed little between 1990 and 2013. Managed manure emissions from horses, sheep, and goats are small due to the relatively small population of these animals (Appendix Table A-2), and most of the manure

Table 2-5 Greenhouse Gas Emissions from Managed Livestock Waste in 1990, 1995, 2000, 2005, 2010-2013

| GHG Type             | 1990 | 1995 | 2000 | 2005  | 2010    | 2011 | 2012 | 2013 |
|----------------------|------|------|------|-------|---------|------|------|------|
|                      |      |      |      | MMT C | 'O2 eq. |      |      |      |
| Nitrous Oxide1       | 13.8 | 15.0 | 16.3 | 16.4  | 17.1    | 17.3 | 17.3 | 17.3 |
| Methane <sup>2</sup> | 37.2 | 43.3 | 50.0 | 56.3  | 60.9    | 61.4 | 63.7 | 61.4 |
| Total                | 51.0 | 58.2 | 66.4 | 72.8  | 78.0    | 78.7 | 81.0 | 78.7 |

Note: MMT CO<sub>2</sub> eq. is million metric rons carbon dioxide equivalent. <sup>1</sup> Does not include emissions from managed manure applied to cropped soils. <sup>2</sup> Includes CH<sub>4</sub> from managed sources and from grazed grasslands. Manure deposited on grasslands produces little CH<sub>4</sub> due to predominantly aerobic conditions.



Figure 2-2 Greenhouse Gas Emissions from Managed Livestock Waste by Livestock Type in 2013 ( $CH_4$  is methane;  $N_2O$  is nitrous oxide;  $CO_2$  is carbon dioxide. MMT  $CO_2$  eq. is million metric tons of carbon dioxide equivalent)

is unmanaged or managed in dry systems (EPA 2015). State-level GHG emissions from managed livestock waste varied across States in 2013, with a small number of States responsible for the larger contributions to national GHG emissions. California and Iowa had the largest GHG emissions from managed livestock waste, 11.7 and 10.5 MMT  $CO_2$  eq., respectively (Appendix Table A-15). In California, emissions were primarily from dairy cattle. In Iowa most emissions were from swine (Appendix Table A-16, A-17).

#### 2.5.1 Methods for Estimating Methane and Nitrous Oxide Emissions From Managed Livestock Waste

This section summarizes how  $CH_4$  and  $N_2O$  emissions from livestock waste were calculated in the U.S. GHG Inventory (EPA 2015) as well as for this inventory report. Animal population data



Figure 2-3 Greenhouse Gas Emissions from Managed Livestock Waste, 1990-2013

 $(CH_4 \text{ is methane; } N_2O \text{ is nitrous oxide; } CO_2 \text{ is carbon dioxide.}$ MMT CO\_2 eq. is million metric tons of carbon dioxide equivalent)

were used to estimate CH<sub>4</sub> production potential and N in waste, and these were multiplied by a methane conversion factor (MCF) and direct and indirect N<sub>2</sub>O emission factors. Methane conversion factors are used to determine the amount of CH<sub>4</sub> emissions that are potentially produced by each unit of livestock waste. Methane conversion factors vary by livestock type, manure storage system, and the waste storage temperature. The IPCC (2006) default direct N<sub>2</sub>O emission factor was used, while indirect N<sub>2</sub>O emission factors varied by region and waste management system. The EPA provides the USDA with State and national estimates of GHG emissions from managed livestock waste. The estimates of GHG emissions from managed livestock waste were prepared following a methodology developed by EPA, consistent with international guidance, and are described in detail in Annex 3.11 of the U.S. GHG Inventory (EPA 2015).







Data required to calculate CH<sub>4</sub> emissions from livestock waste:

- Animal population data (by animal type and State);
- Typical Animal Mass (TAM) data (by animal type);
- Portion of manure managed in each Waste Management System (WMS), by State and animal type;
- Volatile solids (VS) production rate (by animal type and State or national);
- CH<sub>4</sub> producing potential (Bo) of the volatile solids (by animal type);
- Methane Conversion Factors (MCF), the extent to which the CH<sub>4</sub> producing potential is realized for each type of WMS (by State and manure management system, including the impacts of any biogas collection efforts).

Eight livestock types are considered for this particular emissions category: dairy cattle, beef cattle, swine, sheep, goats, poultry, horses, and mules/asses. For swine and dairy cattle, manure management system usage is determined for different farm-size categories using data from the USDA (Ott 2000; USDA 1996a, 1998, 2009) and EPA (EPA 2002a, 2002b, ERG 2000). For beef cattle and poultry, manure management system usage is not tied to farm size and is based on other sources (ERG 2000, UEP 1999, USDA 2000a). For other animal types, manure management system usage is based on previous estimates (EPA 1992).

Appendix Table A-18 presents a summary of the waste characteristics used in the emissions estimates. The method for calculating volatile solids production from beef and dairy cows, heifers, and steers is based on the relationship between animal diet and energy utilization, which is modeled in the enteric fermentation portion of the inventory. Volatile solids content of manure equals the fraction of the diet consumed by cattle that is not digested and thus excreted as fecal material which, when combined with urinary excretions, constitutes manure. Estimations of gross energy intake and digestible energy were used to calculate the indigestible energy per animal unit as gross energy minus digestible energy plus an additional 2 percent of gross energy for urinary energy excretion per animal unit. This was then converted to volatile solids production per animal unit using the typical conversion of dietary gross energy to dry organic matter of 20.1 MJ/kg (Garrett & Johnson 1983). Appendix Table A-19 shows volatile solid production rates by State and livestock category.

MCFs for liquid-slurry, anaerobic-lagoon, and deeppit systems were calculated based on the forecast performance of biological systems relative to temperature changes. These calculations account for the following: average monthly ambient temperature, minimum system temperature, the carryover of volatile solids from month to month, and a factor to account for management and design practices that result in loss of volatile solids form lagoon systems. State-level MCFs for liquid-slurry, deep-pit, and anaerobic-lagoon systems are shown in Appendix Table A-20. Appendix Table A-21 has national-scale maximum methane-generation potential (B0) by animal type, and Appendix Table A-22 has methane conversion factors for dry waste management systems equal to the default IPCC (2006) factors for temperate climates. For each animal type, the base emission factors were weighted to incorporate the distribution of waste management systems within each State to get a State level weighted MCF (Appendix Table A-23).

Methane emissions were estimated by multiplying regional or national animal type-specific volatile solid production by the animal type-specific maximum  $CH_4$  production capacity of the waste and the State-specific MCF.





The following inputs were used in the calculation of direct and indirect N<sub>2</sub>O emissions:

- Animal population data (by animal type and State);
- TAM data (by animal type);
- Portion of manure managed in each WMS (by State and animal type);
- Total Kjeldahl N excretion rate (Nex);
- Direct N<sub>2</sub>O emission factor (EFWMS);
- Indirect N<sub>2</sub>O emission factor for volatilization (EFvolitalization);
- Indirect N<sub>2</sub>O emission factor for runoff and leaching (EFrunoff/leach);
- Fraction of N loss from volatilization of NH<sub>3</sub> and nitrogen oxides (NO<sub>2</sub>) (Fracgas); and
- Fraction of N loss from runoff and leaching (Fracrunoff/leach).

Nitrous oxide emissions were estimated by first determining activity data, including animal population, typical animal mass (TAM), WMS usage, and waste characteristics. Nitrous oxide emissions factors for all manure-management systems were set equal to the default IPCC (2006) factors for temperate climates (Appendix A-24). Nitrogen excretion rates for all cattle except for bull and calves were calculated for each State and animal type in the Cattle Enteric Fermentation Model (CEFM), which is described in section 6.1, Enteric Fermentation and in more detail in Annex 3.9, Methodology for Estimating CH<sub>4</sub> Emissions from Enteric Fermentation. Nitrogen excretion rates for all other animals were determined using data from USDA's Agricultural Waste Management Field Handbook (USDA 1996b, 2008; ERG 2010a, 2010b) and data from the American Society of Agricultural Engineers, Standard D384.1 (ASAE 2003). All N<sub>2</sub>O emissions factors (direct and indirect) were taken from IPCC (IPCC 2006). Country-specific estimates were developed for the fraction of N loss from volatilization (Fracgas) and runoff and leaching (Fracrunoff/leach). Fracgas values were based on WMS-specific volatilization values as estimated from U.S. EPA's National Emission Inventory - Ammonia Emissions from Animal Agriculture Operations (EPA 2005). Fracrunoff/leaching values were based on regional cattle runoff data from EPA's Office of Water (EPA 2002b; see Table A-9 in Annex 3.1).

To estimate  $N_2O$  emissions, first, the amount of N excreted (kg per year) in manure in each WMS for each animal type, State, and year was calculated. The population (head) for each State and animal was multiplied by TAM (kg animal mass per head) divided by 1,000, the N excretion rate (Nex, in kg N per 1,000 kg animal mass per day), WMS distribution (percent), and the number of days per year.

Direct  $N_2O$  emissions were calculated by multiplying the amount of Nex (kg per year) in each WMS by the  $N_2O$  direct emission factor for that WMS (EFWMS, in kg  $N_2O$ -N per kg N, Appendix A-21) and the conversion factor of  $N_2O$ -N to  $N_2O$ . These emissions were summed over State, animal, and WMS to determine the total direct  $N_2O$  emissions (kg of  $N_2O$ per year).

Then, indirect N<sub>2</sub>O emissions from volatilization (kg N<sub>2</sub>O per year) were calculated by multiplying the amount of N excreted (kg per year) in each WMS by the fraction of N lost through volatilization (Fracgas) divided by 100, and the emission factor for volatilization (EFvolatilization in kg N<sub>2</sub>O per kg N), and the conversion factor of N<sub>2</sub>O-N to N<sub>2</sub>O. Next, indirect N<sub>2</sub>O emissions from runoff and leaching (kg N<sub>2</sub>O per year) were calculated by multiplying the amount of N excreted (kg per year) in each WMS by the fraction of N lost through runoff and leaching (Fracrunoff/leach) divided by 100, and the emission factor for runoff and leaching (EFrunoff/ leach in kg N<sub>2</sub>O per kg N), and the conversion factor of N<sub>2</sub>O-N to N<sub>2</sub>O. The indirect N<sub>2</sub>O emissions from volatilization and runoff and leaching were summed to determine the total indirect N<sub>2</sub>O emissions.

#### 2.5.2 Uncertainty in Estimating Methane and Nitrous Oxide Emissions From Managed Livestock Waste

The following discussion of uncertainty in estimating GHG emissions from livestock waste is modified from information provided in the U.S. GHG Inventory (EPA 2015). The information is reproduced here with permission from EPA.

Uncertainty is estimated using an IPCCrecommended Tier 2 method developed by EPA (2003) based on the Monte Carlo Stochastic Simulation technique. A normal probability distribution was assumed for each source data category. The series of equations used were condensed into a single equation for each animal type and State. The results of the uncertainty analysis showed that the manure management  $CH_4$  inventory has a 95-percent confidence interval from 50 to 74 MMT  $CO_2$  eq. around the inventory value of 61 MMT  $CO_2$  eq., and the manure management N<sub>2</sub>O inventory has a 95-percent confidence interval from 15 to 21 MMT  $CO_2$  eq. around the inventory value of 17 MMT  $CO_2$  eq. (Table 2-1).



### 2.5.3 Changes Compared to the 3rd edition of the USDA GHG Report

In addition to updating livestock population data, the total VS and Nex estimates from the CEFM were used in the manure management calculations for cattle in the current inventory. An error in the crude protein calculation in the CEFM was corrected. The VS and Nex for other animal types were updated using data from USDA's updated Agricultural Waste Management Field Handbook (USDA 2010). For the current Inventory, USDA population data were used that included updated market swine categories. Data from the 2007 USDA Census of Agriculture were used to update goat populations and the WMS distributions for dairy and swine. Temperature data, which are used to estimate MCFs for liquid systems, were updated. Anaerobic digester data were updated using the AgSTAR database. In aggregate, these changes resulted in increased average emissions of 13 percent for  $CH_4$  and 3 percent for  $N_2O$ .

#### 2.6 Grazed Lands

Grazed-land soils emit N<sub>2</sub>O due to enhanced N cycling as well as a relatively small amount of CH<sub>4</sub> emissions from manure deposits. Manure deposited on grazed land (i.e., unmanaged manure) produces little CH<sub>4</sub> due to predominant aerobic conditions. Nitrous oxide sources include direct and indirect emissions of N<sub>2</sub>O associated with increased N from synthetic fertilizer and managed manure application, forage legumes cultivation, and unmanaged waste from grazing animals. Grazed lands can be either a source or a sink of CO<sub>2</sub>, depending on the level of soil disturbance, soil type, previous land use, and grazing intensity. In general, grazed mineral soils that were previously cropped with annuals and then tilled sequester C upon conversion to perennial vegetation cover. However, drained organic soils (histosols) used for grazing are typically a CO<sub>2</sub> source because draining enhances decomposition of soil organic matter.

### Table 2-6 Greenhouse Gas Emissions from Grazed Lands in 1990, 1995, 2000, 2005, 2010-2013

|                               | 1990           | 1995  | 2000   | 2005  | 2010  | 2011  | 2012  | 2013  |  |
|-------------------------------|----------------|-------|--------|-------|-------|-------|-------|-------|--|
| GHG Type                      | $MMT CO_2$ eq. |       |        |       |       |       |       |       |  |
| Nitrous Oxide <sup>1</sup>    | 80.5           | 90.3  | 70.8   | 85.0  | 96.1  | 96.0  | 95.5  | 95.9  |  |
| Direct                        | 73.7           | 83.4  | 64.8   | 78.1  | 89.2  | 89.1  | 88.5  | 89.0  |  |
| Indirect Volatilization       | 4.2            | 4.3   | 4.0    | 4.5   | 4.5   | 4.5   | 4.5   | 4.4   |  |
| Indirect Leaching & Runoff    | 2.7            | 2.6   | 2.0    | 2.4   | 2.5   | 2.5   | 2.5   | 2.5   |  |
| Methane <sup>2</sup>          | 2.7            | 2.9   | 2.7    | 2.7   | 2.6   | 2.6   | 2.5   | 2.8   |  |
| Carbon Dioxide                | (9.3)          | 0.3   | (40.5) | (4.8) | 2.8   | 2.8   | 2.7   | 3.3   |  |
| Grazed Lands Remaining Grazed | (1.9)          | 8.1   | (30.1) | 4.2   | 11.7  | 11.7  | 11.5  | 12.1  |  |
| Land Converted to Grazed Land | (7.4)          | (7.7) | (10.4) | (9.0) | (8.9) | (8.9) | (8.8) | (8.8) |  |
| Total                         | 73.9           | 93.6  | 33.0   | 82.9  | 101.5 | 101.4 | 100.7 | 102.0 |  |

from grazed land soils in 2013, accounting for 94 percent of all emissions from this source (Table 2-6). The remaining 6 percent of GHG emissions from grazed lands was divided roughly equally between CH<sub>4</sub> and CO<sub>2</sub>. Grazed lands were sources of CO<sub>2</sub> in 2013, contributing 3 percent of emissions. Nitrous oxide emissions from grazed land totaled 10<sup>2</sup> MMT CO<sub>2</sub> eq. in 2013 (Table 2-6), including direct and indirect sources. Beef cattle are responsible for the highest proportion of direct N<sub>2</sub>O emissions from grazed lands because the vast majority of grazed lands in the United States are used for beef production. Texas and Montana had the largest emissions from grazed lands due to the large amounts of rangeland in these States (Map-2-4). Emissions tended to be high in most Great Plains States, again due to large areas of rangeland. In aggregate, emissions from managed grazed land were greater than those of managed manure in 2013 and for most years since 1990, when national emissions from this source were first estimated (Tables 2-5, 2-6). This is due to large numbers of beef cattle on grazing land (about 80 percent of all cattle) compared to feedlots, which are a source of managed waste. In addition to Map 2-4, direct and indirect N<sub>2</sub>O emisisons for non-Federal are reported in Gg CO<sub>2</sub> eq.'s at the more resolved Major Land Resource Area (MLRA) level in Appendix Table A-25. Similarly, MLRA level soil C stock changes for non-Federal grasslands are reported in Appendix Table A-26.

Nitrous oxide was the predominant GHG emitted

#### 2.6.1 Methods for Estimating Nitrous Oxide Emissions From Grazed Lands

Estimates of N<sub>2</sub>O emissions from this component were based on DayCent model simulations of non-Federal grazed lands (IPCC Tier 3 approach), estimates of animal waste production and application on to grazed lands (Appendix Table A-27), estimates of synthetic N fertilizer applied to grazed lands, and IPCC (2006) methodology for emissions from Federal grazed lands, grazed organic soils, and sewage sludge N additions (EPA 2015). Both managed manure applications and unmanaged manure are considered here. Managed manure is defined as manure that was transported and temporarily stored in a management system before soil application. Unmanaged manure remains on soils after being deposited by grazing animals in pastures, rangelands, and paddocks. The livestock included in this component were dairy cattle, beef cattle, swine, sheep, goats, poultry, and horses.

<sup>1</sup> Does not include emissions from managed manure applied to cropped soils.







The DayCent ecosystem model simulated non-Federal pastures and rangelands at National Resources Inventory (NRI) survey (USDA 2013b) resolution. The NRI is a statistically based sample of all non-Federal land, and includes over 500,000 points in agricultural land for the conterminous United States and Hawaii (note that not all of these points were simulated using the Tier 3 method). Data have been reported every 5 years starting in 1982, with 2007 being the most recent year. Each point is associated with an "expansion factor" that allows scaling of N<sub>2</sub>O emissions from NRI points to the entire country (i.e., each expansion factor represents the amount of area with similar land-use/management history as the sample point). Land-use and some management information (e.g., vegetation type, soil attributes, and irrigation) were originally collected for each NRI point on a 5-year cycle beginning in 1982. However, the NRI program began collecting annual data in 1998, and data are currently available through 2007. For subsequent years (2008-2013), raw model outputs for 2007 were repeated, but emissions were not identical because some expansion factors changed.

Pastures are defined as grazing lands that are relatively intensively managed and may have been seeded with legumes and/or amended with organic N (e.g., managed manure) or synthetic fertilizer N and/ or irrigated. Rangelands are typically extensive areas of native grasslands that are not intensively managed. Grazing intensity on pastures was assumed to be moderate to heavy while intensity on rangelands was assumed to be light to moderate. Key model inputs are daily weather, soil texture class, vegetation mix, animal waste N inputs, and grazing intensity. The model simulates soil water and temperature flows, plant growth and senescence, decomposition of dead plant material and soil organic matter, mineralization of nutrients, and trace gas fluxes. Nitrous oxide emissions, NO<sub>3</sub> leaching and N (NO<sub>2</sub>, NH<sub>3</sub>) volatilization were simulated on a per unit area basis, and multiplied by the estimated expansion factor for each NRI point. Outputs for each NRI point were then aggregated to the State and national levels. The DayCent simulations are described in more detail in Chapter 3 of this report and in EPA (2015) and Del Grosso et al. (2010).

Manure N deposition from grazing animals (i.e., PRP manure) on non-Federal grasslands was an input to the DayCent model (see Annex 3.12 EPA 2015), and included approximately 92 percent of total PRP manure. The remainder of the PRP manure N excretions in each county was assumed to be excreted on Federal grasslands, and the N<sub>2</sub>O emissions were estimated using the IPCC (2006) Tier 1 method with IPCC default emission factors. Waste N deposited on grazed lands not accounted for by the DayCent simulations and sewage sludge N additions were multiplied by the default IPCC (2006) emission factor of 0.02 kg N<sub>2</sub>0-N/kg N to estimate direct N<sub>2</sub>O-N emissions, as opposed to the 0.01 kg N<sub>2</sub>O-N/kg N used to estimate N additions from
managed soils (including mineral fertilizers, organic amendments, crop residues, and N mineralization from soil C losses). Data available at the time the IPCC (2006) guidelines were developed suggested that the default emission factor should be greater for waste N deposited by grazing animals compared to other N sources, but more recent observations suggest that this factor should be close to the 0.01 kg  $N_2$ O-N/kg N factor use for the other sources (van der Weerden 2011).

The amounts of PRP manure N applied on non-Federal grasslands in each NRI point were based on the proportion of non-Federal grassland area compared to total grassland area according to data from the NRI (USDA 2009, relative to the area of Federal grasslands from the U.S. Geological Survey (USGS) National Land Cover Dataset (Forest Inventory and Analysis Data, <a href="http://fia.fs.us/">http://fia.fs.us/</a> tools-data/data>). Managed manure N amendments to grasslands were estimated from Edmonds et al. (2003) and adjusted for annual variation using data on the availability of managed manure N for application to soils. All managed manure applied to grasslands was assumed to be applied to non-Federal grasslands. Sewage sludge was assumed to be applied on grasslands instead of cropped land because of the heavy metal content and other pollutants in human waste that limit its use as an amendment to croplands. Sewage sludge application was estimated from data compiled by EPA (1993), NEBRA (2007), and AAPFCO (1995-2014).

Indirect N<sub>2</sub>O emissions due to volatilization of applied N and indirect N<sub>2</sub>O emissions due to leaching were calculated using DayCent and IPCC (2006) estimates of volatilization and NO<sub>2</sub> leaching and IPCC estimates of the portion of volatilized or leached/runoff N that is converted to N<sub>2</sub>O. Nitrogen volatilized, leached, or runoff N are all outputs for the grazed lands simulated by DayCent. For animal waste not accounted for by the DayCent simulations, 10 percent of animal waste N was assumed to volatilize and 30 percent of animal waste N was assumed to be leached or runoff. The total volatilized N was multiplied by the IPCC default emission factor of 0.01 kg N<sub>2</sub>0- N/kg N (IPCC 2006). The total N leached or runoff was multiplied by the IPCC (2006) default emission factor of 0.0075 kg N<sub>2</sub>0-N/kg N.

Total grazed land N<sub>2</sub>O emissions were partitioned among different animal types by assuming that emissions are linearly proportional to waste N production.

### 2.6.2 Uncertainty in Nitrous Oxide Emissions From Grazed Lands

Uncertainty due to model inputs and model structure were quantified. Model inputs used to represent N inputs from livestock waste and synthetic fertilizer are not known precisely, and each of these has an associated range of uncertainty represented by a probability density function. Model structural uncertainty refers to the errors inherent in the model. That is, the model is not expected to yield perfect results even if model inputs were precisely known. To address uncertainty in model inputs, a series of 100 Monte Carlo simulations were performed for each NRI point. To address model structural uncertainty, DayCent-simulated N<sub>2</sub>O emissions were compared with measured emissions from over 15 grassland experiments. IPCC (2006) methodology was used to estimate uncertainties for Federal grazed lands not accounted for by the DayCent simulations. Uncertainty from the DayCent-simulated grazed land was combined with uncertainty for remaining grazed lands calculated using IPCC (2006) methodology based on simple error propagation. The calculated 95-percent confidence interval around the estimate of 96 MMT CO, eq. for grazed-soil N<sub>2</sub>O emissions was 72 to 138 MMT CO<sub>2</sub> eq. (Table 2-1). Uncertainty calculations are described in detail in Chapter 3 of this report.

### 2.6.3 Methodology To Estimate Methane Emissions From Grazed Lands

Methane emissions were estimated by multiplying regional or national animal-type-specific volatile solid production by the animal-type-specific maximum  $CH_4$  production capacity of the waste and the national MCF for manure deposited on grazed lands. As noted previously, these emissions are very small because of predominately aerobic conditions in deposited manure.

# 2.6.4 Changes Compared to the 3rd Edition of the USDA GHG Report

There were several changes compared to the previous inventory. The most important change was performing DayCent model simulations at NRI resolution (simulations were conducted at the county level for the previous inventory). Simulations also incorporated MODIS Enhanced Vegetation Index to reduce uncertainties in the estimation of crop production, and instead of using model-generated N and C deposited from animal waste, these were based on county-level animal population data to be consistent with activity data for emissions from



enteric fermentation and livestock waste. Additional changes include using updated and refined model activity data, better representing land use change and tillage practices, expanding the observational data sets used to quantify model uncertainty, and improving model algorithms to better represent the processes that control soil GHG fluxes. In aggregate, these changes resulted in an approximate 40-percent increase in  $N_2O$  emissions from grazed lands on average.

### 2.6.5 Methods for Estimating Carbon Dioxide Fluxes for Grazed Lands

As with  $N_2O$  emissions, carbon dioxide (CO<sub>2</sub>) fluxes for non-Federal grasslands were estimated using results from the DayCent ecosystem model and IPCC (2006) methodology. See section 2.6.1 for details on model simulations. Although model simulations for N<sub>2</sub>O and CO<sub>2</sub> fluxes were identical, model outputs for CO<sub>2</sub> are portioned by land use (grassland remaining grassland versus land converted to grassland) whereas N<sub>2</sub>O emissions from grazed lands are not partitioned by land use. DayCent has been parameterized to simulate continuous grasslands and croplands converted to grasslands but not other land uses converted to grasslands. Consequently, IPCC (2006) methodology was used to estimate CO<sub>2</sub> fluxes for land converted from non-agricultural uses to grazed land. Also, DayCent has not been well tested with organic soils, so IPCC (2006) methodology was also used for grazed organic soils.

Both DayCent and IPCC (2006) methodologies rely on land use classifications and land use histories. The National Resources Inventory (USDA 2009) was used to identify grassland remaining grassland and land converted to grassland. Grassland includes pasture and rangeland where the primary land use is livestock grazing. According to NRI data, ~17 million ha of grassland (out of a total ~261 million ha reported in 2007) were converted to grassland between 1997 and 2007. An example of land converted to grassland is land that was cropped historically but then converted to pasture use. Carbon dioxide fluxes for grazed lands were calculated using estimates of changes in soil organic C stocks and molecular stoichiometry.

Mineral soil C stocks and stock changes for NRI points classified as grasslands remaining grasslands and cropland converted to grassland were estimated using the DayCent model. In addition to accounting for weather and soil texture, these simulations also included estimates of managed manure additions to grasslands. DayCent estimates carbon-stock changes by accounting for C inputs from plant material and manure and C outputs from grazing and decomposition. For details on sources of the input data required to run DayCent and how the simulations were conducted, see Chapter 3 of this report and Chapter 7 and Annex 3.12 of the U.S. GHG Inventory (EPA 2015).

Mineral soil C stocks and stock changes for NRI points classified as land other than cropland converted to grassland and all grasslands growing on organic soils were estimated using IPCC (2006, 1997) methodology. U.S.-specific stock change factors based on field data were developed for land converted to grassland and for drained histosols used for grazing. As with grazed-land N<sub>2</sub>O emissions, CO<sub>2</sub> fluxes were partitioned among different animal types by assuming that fluxes are linearly proportional to waste N production.

# 2.6.6 Uncertainty in Carbon Dioxide Fluxes for Grazed Lands

Uncertainty for the estimates of  $CO_2$  fluxes from mineral soil grassland remaining grassland and cropland converted to grassland provided by DayCent model simulations used a Monte Carlo approach, which addresses uncertainties in model inputs, uncertainty in model structure, and uncertainties from scaling NRI points to cover all grasslands remaining grassland in the United States. Uncertainty for estimates from other land uses converted to grassland and all organic soil grasslands provided by IPCC (2006, 1997) methodology used a Monte Carlo approach that addressed uncertainties in carbon-stock change factors and in land use data. To assess structural uncertainty, DayCent simulated





soil C-stock changes were compared with measured values from over 25 grassland experiments in North America. Uncertainties were combined using simple error propagation. The results yielded an uncertainty of (24) to 48 around the estimate of 12 MMT  $CO_2$  eq. in 2013 for land remaining grazed land and (18) to 1 around the estimate of (9) MMT  $CO_2$  eq. for land converted to grazed land in 2013, where parentheses indicate a net sequestration of  $CO_2$  (Table 2-1). Uncertainty calculations are described in detail in Chapter 3 of this report.

# 2.6.7 Changes Compared to the 3rd edition of the USDA GHG Report

As with  $N_2O$ , the major change compared to the previous inventory was performing DayCent model simulations at NRI resolution (see section 2.6.4 for details). The implemented changes resulted in a decrease in estimated soil C sequestration of approximately 30 MMT CO<sub>2</sub> eq. on average (69 percent decrease), compared to the previous inventory.

## 2.7 Mitigating Greenhouse Gas Emissions From Livestock

In addition to the mitigation strategies discussed below that are based primarily on implementation of improved technologies designed to decrease emissions from enteric fermentation, livestock waste management, and grazed lands, there are also mitigation options related to human behavior. Specifically, recent research suggests that consuming less animal products is likely to reduce GHG emissions and have co-benefits such as improved human health and increased biodiversity (Del Grosso and Cavigelli 2012, Smith et al. 2013, Eshel et al. 2014, Machovina et al. 2015).



Figure 2-4 Estimated Reductions in Methane Emissions from Anaerobic Digesters, 2000-2013

### 2.7.1 Enteric Fermentation

Emissions of  $CH_4$  from enteric fermentation in ruminant and non-ruminant animals are dependent on the animal's digestive system and the amount and type of feed consumed. On average, beef and dairy cattle convert 6 percent of gross energy intake from feed into  $CH_4$  through enteric fermentation, constituting a loss of energy from the perspective of the animal (Johnson & Johnson 1995). Research on animal nutrition has focused on reducing this energy loss, which consequently reduces  $CH_4$  emissions and increases nutritional efficiency. Through such research, a number of potential strategies have been identified to reduce  $CH_4$  emissions from enteric fermentation, including (Mosier et al. 1998):

- Increasing the digestibility of forages and feeds;
- Providing feed additives which may tie up hydrogen in the rumen;
- Inhibiting the formation of CH<sub>4</sub> by rumen bacteria;
- Increasing acetic acid in the rumen;
- Improving production efficiency; and
- Modifying bacteria in the rumen.

Currently, Government research programs indirectly address mitigation of  $CH_4$  emissions through improved livestock production. Ongoing research development and deployment efforts related to mitigating  $CH_4$  emissions include:

- Decreasing feed digestion time by improving grazing management to increase the digestibility of forages, increasing the digestibility of feed grains, and increasing the feeding of concentrated supplements;
- Adding edible oils in feed to sequester hydrogen, making it unavailable for methanogens;
- Using feed additives, ionophores, which inhibit the formation of CH<sub>4</sub> by rumen bacteria;
- Improving livestock production efficiency by feed additives such as hormones to increase milk production and growth regulators for beef production or by improved diet or genetics;
- Enhancing rumen microbes to produce usable products rather than  $CH_4$ .

Although many of the mitigation options mentioned above have been extensively studied (Hristov et al. 2013), reliable quantitative estimates of these potentials remain elusive. Reasons for lack of reliable quantitative estimates include variability in observations and complex interactions with other GHG sources (e.g., emissions from livestock waste) that compromise the efficacy of general recommendations. Agroecosystem models have potential to account for these interactions, but empirical models are limited by simplistic assumptions that lead to large errors, and complex models are limited by difficulty in acquiring required input data (Kebreab et al. 2016).

### 2.7.2 Livestock Waste

Livestock and poultry waste from production facilities has the potential to produce significant quantities of  $CH_4$ and N<sub>2</sub>O, depending on the waste management practices

used. In the United States, livestock and poultry manure is managed in a myriad of ways, suggesting there are multiple options for reducing  $CH_4$  and  $N_2O$  emissions. When manure is stored or treated in systems that promote anaerobic conditions, such as lagoons and tanks, the decomposition of the biodegradable fraction of the waste tends to produce  $CH_4$ . When manure is handled as a solid, such as in stacks or deposits on pastures, the biodegradable fraction tends to decompose aerobically and produce little or no  $CH_4$ , although it produces  $N_2O$ .

A relatively large portion of  $CH_4$  is emitted from livestock and poultry waste in anaerobic lagoons. Current, commercially available technologies that have been the most successful in reducing  $CH_4$ emissions from manure management are anaerobic digestion systems. Unlike conventional lagoons, digestion technologies keep waste treatment and storage functions separate and allow for gas recovery and combustion, pathogen and organic stabilization, odor and other air-quality pollution control, and flexible approaches to nutrient management.

The EPA tracks installation and usage of anaerobic digesters under voluntary programs such as AgStar (http://www.epa.gov/agstar/) and uses this data to estimate how much anaerobic digesters have reduced overall  $CH_4$  emissions from livestock waste over the last 12 years. Figure 2-4 shows an increasing trend in emissions reductions annually from the use of anaerobic digesters, reflecting increasing numbers of digester systems being installed each year.

Other emission reduction processes can include separation, aeration, or shifts to solid handling or storage management systems. These strategies, however, could be limited by other farm or environmental constraints and costs.



### 2.7.3 Grazed Lands

Nitrous oxide is by far the largest source of emissions from grazed lands, so it also provides the largest mitigation potential (Table 2-6). However, because most grazed lands are not highly managed, particularly the large expanses of rangeland in the Western United States, mitigation options are limited. One strategy that may be feasible for more intensely managed pastures in the Eastern United States is nitrification inhibitors. Although synthetic N fertilizer inputs are low, grazing lands usually have large N inputs from biological N fixation because they are seeded with legumes. Equations to estimate the mitigation potential of fertilizers formulated with nitrification inhibitors are included in a recent USDA report (Ogle et al. 2014).

## 2.8 Planned Improvements

There are a few areas where changes could be made to improve upon the existing inventory. Regarding enteric CH<sub>4</sub> emissions, changes involve updating and refining input values such as cattle births, DE, animal weight gains, emissions factors, and updating the uncertainty methodology. For managed manure emissions, the uncertainty analysis will be updated to more accurately assess uncertainty of emission calculations due to extensive changes in emission calculation methodology and the use of new calculations and variables for indirect N<sub>2</sub>O emissions. The 2012 Agricultural Census data will be used to update county-level animal population and WMS estimates. For grazing emission from soils, major improvements include refining the DayCent model and using more recent NRI data. Future inventories will attempt to quantify mitigation potentials from all sources related to livestock production.



### SUGGESTED CITATION

Del Grosso, S.J., S.M. Ogle, M. Reyes-Fox, K.L. Nichols, and E. Marx, 2016. Chapter 2: Livestock and Grazed Lands Emissions. In U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2013, Technical Bulletin No. 1943, United States Department of Agriculture, Office of the Chief Economist, Washington, DC. 137 pp. September 2016. Del Grosso S.J. and M. Baranski, Eds.

### 2.9 References

AAPFCO (1995-2000a, 2002 -2007). Commercial Fertilizers. Association of American Plant Food Control Officials. University of Kentucky. Lexington, KY.

AAPFCO (2008- 2014). Commercial Fertilizers. Association of American Plant Food Control Officials. University of Missouri. Columbia, MO.

Archibeque, S., K. Haugen-Kozyra, K. Johnson, E. Kebreab, W. Powers-Schilling, L.P. Olander, and A. Van de Bogert (2012). Near-term options for reducing greenhouse gas emissions from livestock systems in the United States. Nicholas Institute for Environmental Policy Solutions Report NI R 12-04.

ASAE (2003). Manure production and characteristics. American Society of Agricultural Engineers, St. Joseph, MI.

Del Grosso, S.J., S.M. Ogle, W.J. Parton, F.J. Breidt. (2010). Estimating uncertainty in N<sub>2</sub>O emissions from US cropland soils, Global Biogeochemical Cycles, 24, GB1009, doi:10.1029/2009GB003544.

Del Grosso, S.J. and M.A. Cavigelli (2012). Climate stabilization wedges revisited: can agricultural production and greenhouse gas reduction goals be accomplished? Frontiers in Ecology and the Environment, 10: 571-578.

Edmonds, L., N. Gollehon, R.L. Kellogg, B. Kintzer, L. Knight, C. Lander, J. Lemunyon, D. Meyer, D.C. Moffitt, and J. Schaeffer (2003). Costs associated with development and implementation of comprehensive nutrient management plans, part 1: nutrient management, land treatment, manure and wastewater handling and storage, and recordkeeping. Natural Resource Conservation Service, United States Department of Agriculture, Government Printing Office, Washington, D.C.

Enns, M. (2008). Personal Communication. Mark Enns, Colorado State University and staff at ICF International.

EPA (1992). Global methane emissions from livestock and poultry manure. L.M. Safley, M.E. Casada, J.W. Woodbury, and K.F. Roos, authors. U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, D.C.

EPA (1993). Federal Register. Part II. Standards for the Use and Disposal of Sewage Sludge; Final Rules. U.S. Environmental Protection Agency, 40 CFR Parts 257, 403, and 503.

EPA (2002a). Development document for the final revisions to The National Pollutant Discharge Elimination System (NPDES) regulation and the effluent guidelines for Concentrated Animal Feeding Operations (CAFOS). EPA-821-R-03-001. U.S. Environmental Protection Agency, Washington, D.C.

EPA (2002b). Cost methodology for the final revisions to the National Pollutant Discharge Elimination System (NPDES) regulation and the effluent guidelines for Concentrated Animal Feeding Operations (CAFOS). EPA-821-R-03-004. U.S. Environmental Protection Agency, Washington, D.C.

EPA (2003). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2001. Office of Atmospheric Programs, Washington, D.C. EPA (2005). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2003. Office of Atmospheric Programs, Washington, D.C.

EPA (2015). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013. Office of Atmospheric Programs, Washington, D.C.

ERG (2000). Calculations: percent distribution of manure for waste management systems. Eastern Research Group, Inc., Morrisville, NC.

ERG (2010a). Telecon with William Boyd of USDA Natural Resources Conservation Service and Cortney Itle of ERG Concerning Updated Volatile Solids and Nitrogen Excretion Rates. August 8, 2010.

ERG (2010b). Updating Current Inventory Manure Characteristics: New USDA Agricultural Waste Management Field Handbook Values. Memorandum to EPA from ERG. August 13, 2010.

Eshel, G., A. Shepon, T. Makov., and R. Milo (2014). Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proceedings of the National Academy of Sciences, 111(33), 11996-12001.

Garrett, W.N. and D.E. Johnson (1983). Nutritional energetics of ruminants. Journal of Animal Science, 57(suppl.2): 478-497.

Groffman, P.M., R. Brumme, K. Butterbach-Bahl, K.E. Dobbie, A.R. Mosier, D. Ojima, H. Papen, W.J. Parton, K.A. Smith, and C. Wagner-Riddle (2000) Evaluating annual nitrous oxide fluxes at the ecosystem scale. Global Biogeochemical Cycles, 14(4): 1061.

Holstein Association (2010). History of the Holstein Breed (website). Available online at <a href="http://www.holsteinusa.com/">http://www.holsteinusa.com/</a> holstein\_breed/breedhistory.html>.

Hristov, A.N., J. Oh, C. Lee, R. Meinen, F. Montes, T. Ott, J. Firkins, A. Rotz, C. Dell, A. Adesogan, W.Z. Yang, J. Tricarico, E. Kebreab, G. Waghorn, J. Dijkstra, and S. Oosting (2013). In: Gerber, P., B. Henderson, and H. Makkar, editors, Mitigation of greenhouse gas emissions in livestock production: A review of technical options for non-CO<sub>2</sub> emission. Food and Agriculture Organization of the United Nations, Rome.

IPCC (1997). Revised 1996 IPCC guidelines for national greenhouse gas inventories, vol. 1-3. Working Group 1, authors. Intergovernmental Panel on Climate Change, United Nations Environment Programme, Organization for Economic Cooperation and Development, International Energy Agency, Paris, France.

IPCC (2006). 2006 IPCC guidelines for national greenhouse gas inventories, vol. 4: agriculture, forestry and other land use. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, editors. Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme, Technical Support Unit, Kanagawa, Japan.

Johnson, K.A. and D.E. Johnson (1995). Methane emissions from cattle. Journal of Animal Science, 73: 2483-2492.

Johnson, K. (2010). Personal Communication. Kris Johnson, Washington State University, Pullman, and ICF International.



Kebreab, E., L. Tedeschi, J. Dijkstra, J.L. Ellis, A. Bannink and J. France (2016). Modeling greenhouse gas emissions from enteric fermentation advances. In Agricultural Systems Modeling, Synthesis and Modeling of Greenhouse Gas Emissions and Carbon Storage in Agricultural and Forest Systems to Guide Mitigation and Adaptation, 6:173-196.

Machovina, B., K.J. Feeley, and W.J. Ripple (2015). Biodiversity conservation: The key is reducing meat consumption. Science of the Total Environment, 536, 419-431.

Mosier, A.R., J.M. Duxbury, J.R. Freney, O. Heinemeyer and K. Minami (1998). Mitigating agricultural emissions of methane. Climatic Change, 40:39-80.

NEBRA (2007). A National Biosolids Regulation, Quantity, End Use and Disposal Survey: Final report. Available online at <a href="http://www.nebiosolids.org/uploads/pdf/NtlBiosolidsReport-20July07">http://www.nebiosolids.org/uploads/pdf/NtlBiosolidsReport-20July07</a>. pdf>.

Ogle, S.M., P.R. Adler, F.J. Breidt, S. Del Grosso, J. Derner, A. Franzluebbers, M. Liebig, B. Linquist, G.P. Robertson, M. Schoeneberger, J. Six, C. van Kessel, R. Venterea, T. West (2014). Chapter 3: Quantifying greenhouse gas sources and sinks in cropland and grazing land systems. In Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory. Technical Bulletin Number 1939, Office of the Chief Economist, United States Department of Agriculture, Washington, DC. 606 pages. Eve, M., D. Pape, M. Flugge, R. Steele, D. Man, M. Riley-Gilbert, and S. Biggar, Eds.

Ott, S.L. (2000). Dairy '96 Study. Stephen L. Ott, Animal and Plant Health Inspection Service, United States Department of Agriculture. June 19, 2000.

Smith, P., H. Haberl, A. Popp, K.H. Erb, C. Lauk, R. Harper,... and S. Rose (2013). How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Global Change Biology, 19(8), 2285-2302.

UEP (1999). Voluntary survey results, estimated percentage participation/activity, caged layer environmental management practices. Industry data submissions for EPA profile development, United Egg Producers and National Chicken Council.

USDA (1996a). Swine '95: grower/finisher part II: reference of 1995 U.S. grower/finisher health and management practices. United States Department of Agriculture, Animal Plant Health and Inspection Service, Washington, D.C.

USDA (1996b). Agricultural Waste Management Field Handbook, National Engineering Handbook (NEH), Part 651. Natural Resources Conservation Service, United States Department of Agriculture. July 1996.

USDA (1997). Beef cow/calf health and productivity audit. United States Department of Agriculture, Animal and Plant Health Inspection Service, National Animal Health Monitoring System, Fort Collins, CO. Available online at <a href="http://www.aphis.usda.gov/vs/ceah/cahm>">http://www.aphis.usda.gov/vs/ceah/cahm></a>.

USDA (1998). Re-aggregated data from the National Animal Health Monitoring System's (NAHMS) swine '95 study. Aggregated by E. Bush. United States Department of Agriculture, Centers for Epidemiology and Animal Health. USDA (2000a). Layers '99—Part II: References of 1999 Table Egg Layer Management in the U.S. USDA-APHIS-VS. Fort Collins, CO. <a href="http://www.aphis.usda.gov/animal\_health/nahms/">http://www.aphis.usda.gov/animal\_health/nahms/</a> poultry/downloads/layers99/Layers99\_dr\_PartII.pdf>.

USDA (2000b). 1997 National Resources Inventory. United States Department of Agriculture, Natural Resources Conservation Service, Washington, D.C. Available online at <a href="http://www.nrcs.usda.gov/technical/NRI/">http://www.nrcs.usda.gov/technical/NRI/</a>.

USDA (2008). Agricultural Waste Management Field Handbook, National Engineering Handbook (NEH), Part 651. Natural Resources Conservation Service, United States Department of Agriculture.

USDA (2009). Agricultural Statistics Annual. National Agricultural Statistics Service. Available online at <a href="http://www.nass.usda.gov/">http://www.nass.usda.gov/</a> Publications/Ag\_Statistics/2009/2009.pdf>.

USDA (2010). Beef 2007–08, Part V: Reference of Beef Cow-calf Management Practices in the United States, 2007–08. USDA– APHIS–VS, CEAH. Fort Collins, CO.

USDA (2013a). Quick Stats: Agricultural Statistics Database. National Agriculture Statistics Service, United States Department of Agriculture. Washington, DC. Available online at <a href="http://quickstats.nass.usda.gov/">http://quickstats.nass.usda.gov/</a>.

USDA (2013b). Summary Report: 2010 National Resources Inventory. Natural Resources Conservation Service, Washington, D.C, and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa. <a href="http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/stelprdb1167354.pdf">http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/stelprdb1167354.pdf</a>

van der Weerden, T. J., J. Luo, C.A. de Klein, C.J. Hoogendoorn, R.P. Littlejohn., and G.J. Rys, (2011). Disaggregating nitrous oxide emission factors for ruminant urine and dung deposited onto pastoral soils. Agriculture, ecosystems & environment, 141(3), 426-436.





# 2.10 Appendix A

A-1 Population of Animals by State in 2013

A-2 U.S. Livestock Population, 1990, 1995, 2000, 2005-2013

A-3 State-Level Methane Emissions From Enteric Fermentation by Livestock Category in 2013

A-4 State-Level Methane Emissions From Enteric Fermentation in 1990, 1995, 2000, 2005-2013

A-5 Cattle Population Categories Used for Estimating Methane Emissions

A-6 Dairy Lactation by Region

A-7 Typical Livestock Weights

A-8 U.S. Feedlot Placement in 2013

A-9 Regional Estimates of Digestible Energy and Methane Conversion Rates for Foraging Animals 2007-2013

A-10 Regional Estimates of Digestible Energy and Methane Conversion Rates for Dairy and Feedlot Cattle in 2013

A-11 Definition of Regions for Characterizing the Diets of Dairy Cattle (all years) and Foraging Cattle 1990-2006

A-12 Definition of Regions for Characterizing the Diets of Foraging Cattle from 2007-2013

A-13 Methane Emissions From Cattle Enteric Fermentation, 1990-2013

A-14 IPCC Emission Factors for Livestock

A-15 Summary of Greenhouse Gas Emissions From Managed Waste by State in 2013

A-16 Methane Emissions From Manure Management by State and Animal in 2013

A-17 Nitrous Oxide Emissions From Manure Management by State and Animal in 2013

A-18 Waste Characteristics Data

A-19 State Volatile Solids Production Rates in 2013

A-20 State-Based Methane Conversion Factors for Liquid Waste Management Systems in 2013

A-21 Maximum Methane Generation Potential, B0

A-22 Methane Conversion Factors for Dry Systems

A-23 Methane Conversion Factors for Livestock Waste Emissions in 2013  $\,$ 

A-24 Direct Nitrous Oxide Emission Factors for 2013

A-25 Nitrogen in Livestock Waste on Grazed Lands

A-26 MLRA-Level Estimates of Mean Annual Soil Carbon Stock Changes From Non-Federal Grasslands, 2003-2007

A-27 MLRA-Level Estimates of Mean Annual Direct and Indirect N,O Emissions From Non-Federal Grasslands, 2003-2007



# Appendix Table A-1 Population of Animals by State in 2013

|                | Beef Cattle | Dairy Cattle | Swine      | Sheep     | Goat      | Horse     | Poultry       |
|----------------|-------------|--------------|------------|-----------|-----------|-----------|---------------|
| State          |             |              |            | Head      |           |           | · · · ·       |
| Alabama        | 1,164,323   | 17,605       | 85,000     | 12,083    | 47,212    | 59,026    | 206,577,762   |
| Alaska         | 11,681      | 805          | 1,000      | 12,083    | 626       | 1,443     | 1,212,966     |
| Arizona        | 716,787     | 360,285      | 175,000    | 140,000   | 77,557    | 97,124    | 1,212,966     |
| Arkansas       | 1,529,163   | 20,585       | 115,000    | 12,083    | 39,816    | 57,514    | 211,111,970   |
| California     | 1,948,078   | 3,470,786    | 95,000     | 570,000   | 141,886   | 134,921   | 35,115,697    |
| Colorado       | 2,905,849   | 288,910      | 705,000    | 435,000   | 31,913    | 108,624   | 6,310,216     |
| Connecticut    | 12,609      | 36,203       | 3,500      | 7,333     | 4,356     | 18,607    | 3,292,216     |
| Delaware       | 8,354       | 9,796        | 6,000      | 12,083    | 1,704     | 6,596     | 40,412,966    |
| Florida        | 1,544,585   | 219,544      | 15,000     | 12,083    | 50,923    | 121,118   | 22,346,307    |
| Georgia        | 864,002     | 148,980      | 141,000    | 12,083    | 69,256    | 68,492    | 270,221,762   |
| Hawaii         | 123,956     | 5,168        | 11,500     | 12,083    | 13,761    | 4,827     | 1,212,966     |
| Idaho          | 1,368,084   | 1,186,413    | 38,200     | 235,000   | 18,208    | 58,921    | 1,212,966     |
| Illinois       | 928,878     | 196,112      | 4,625,000  | 53,000    | 31,120    | 59,361    | 15,352,580    |
| Indiana        | 505,098     | 319,163      | 3,625,000  | 55,000    | 36,940    | 100,629   | 51,466,697    |
| Iowa           | 3,739,688   | 429,699      | 20,375,000 | 175,000   | 56,297    | 60,248    | 76,182,580    |
| Kansas         | 6,075,096   | 299,269      | 1,812,500  | 65,000    | 40,878    | 71,868    | 1,212,966     |
| Kentucky       | 1,946,299   | 158,722      | 315.000    | 43,000    | 57,308    | 135.110   | 63,290,034    |
| Louisiana      | 800.046     | 29,200       | 8.000      | 12.083    | 18.220    | 59.645    | 13,121,580    |
| Maine          | 24.191      | 63.864       | 4.500      | 7.333     | 6.558     | 11.953    | 3,912,216     |
| Maryland       | 94.328      | 106.053      | 22.000     | 12.083    | 9,516     | 28.245    | 59.341.125    |
| Massachusetts  | 14.149      | 24,893       | 8,500      | 7,333     | 8.674     | 20.288    | 442.216       |
| Michigan       | 461,980     | 726,955      | 1.045.000  | 82,000    | 26,903    | 85,370    | 26,567,580    |
| Minnesota      | 1.292.988   | 982.438      | 7.787.500  | 135.000   | 33.107    | 61.633    | 37.940.121    |
| Mississippi    | 879.933     | 28,158       | 500.000    | 12.083    | 23.304    | 57.371    | 143,196,762   |
| Missouri       | 3.298.804   | 180.591      | 2.800.000  | 75.000    | 105.113   | 110.921   | 150.681.212   |
| Montana        | 2.958.072   | 29.151       | 166.000    | 235.000   | 9.937     | 96.457    | 896.216       |
| Nebraska       | 7.339.137   | 103.169      | 3.037.500  | 80.000    | 24.087    | 64.066    | 21.772.580    |
| Nevada         | 435 537     | 52,863       | 2,000      | 73,000    | 23 287    | 23 278    | 1 212 966     |
| New Hampshire  | 7 792       | 26 904       | 3,800      | 7 333     | 5 072     | 8,936     | 1 212 966     |
| New Jersev     | 17 937      | 14 576       | 9,000      | 12.083    | 7 785     | 27 161    | 1 212 966     |
| New Mexico     | 789.115     | 608.835      | 1.200      | 100.000   | 30.044    | 50.144    | 1.212.966     |
| New York       | 250.477     | 1.241.783    | 66.000     | 70.000    | 35.745    | 91.189    | 16.162.580    |
| North Carolina | 673.494     | 92.519       | 8.900.000  | 26.000    | 59.969    | 64.569    | 175.307.515   |
| North Dakota   | 1.885.554   | 40.177       | 135.000    | 74.000    | 4.830     | 45.375    | 1.212.966     |
| Ohio           | 780.309     | 533,110      | 2.140.000  | 121.000   | 47.969    | 113.113   | 51,455,788    |
| Oklahoma       | 3 942 639   | 89 538       | 2,187,500  | 75,000    | 81 811    | 157 591   | 42.041.125    |
| Oregon         | 1.109.398   | 253.845      | 8.500      | 210.000   | 32.249    | 66.628    | 12,974,580    |
| Pennsylvania   | 488.239     | 1.118.260    | 1.127.500  | 86.000    | 48.366    | 120.614   | 63.279.242    |
| Rhode Island   | 2,916       | 1 860        | 1 900      | 7 333     | 923       | 2,203     | 1 212 966     |
| South Carolina | 318.626     | 31,187       | 245.000    | 12.083    | 37.761    | 54.217    | 50,900,818    |
| South Dakota   | 3.809.849   | 193,980      | 1.162.500  | 275.000   | 17.706    | 68.665    | 4.586.333     |
| Tennessee      | 1.655.886   | 97.535       | 175.000    | 33.000    | 83.866    | 87.449    | 34.381.398    |
| Texas          | 11 475 115  | 857 519      | 632,500    | 700,000   | 826 704   | 387 214   | 136 119 489   |
| Utah           | 639 196     | 185 983      | 730,000    | 295,000   | 14 210    | 58 818    | 6 021 333     |
| Vermont        | 30,796      | 261 563      | 3 200      | 7 333     | 11 388    | 11 342    | 459 216       |
| Virginia       | 1 329 691   | 177 138      | 255,000    | 87,000    | 48 379    | 86 135    | 54 576 485    |
| Washington     | 780.991     | 508.126      | 38.200     | 54.000    | 25.906    | 59.591    | 18.362.580    |
| West Virginia  | 383 913     | 20 113       | 5 000      | 30,000    | 17 001    | 24 215    | 20 672 333    |
| Wisconsin      | 908 325     | 2.618 905    | 305 000    | 84 000    | 62.145    | 100 168   | 16 784 762    |
| Wyoming        | 1.428.100   | 13.061       | 90.000     | 375.000   | 9.416     | 70.858    | 329,216       |
| Total          | 75,700,053  | 18,481,893   | 65,746,500 | 5,335,000 | 2,517,711 | 3,539,852 | 2,177,309,818 |

Source: EPA 2015



| ion .  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | - |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |
| Martin | Mr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000 |   |
|        | A CONTRACTOR OF A CONTRACTOR O | M   | 5 |

### Appendix Table A-2 U.S. Livestock Population, 1990, 1995, 2000, 2005-2013

|                           | 1990  | 1995  | 2000  | 2005  | 2006  | 2007     | 2008   | 2009  | 2010  | 2011  | 2012  | 2013  |
|---------------------------|-------|-------|-------|-------|-------|----------|--------|-------|-------|-------|-------|-------|
| Animal Type               |       |       |       |       |       | 1 millio | n head |       |       |       |       |       |
| Dairy Cattle <sup>1</sup> | 14    | 14    | 13    | 13    | 13    | 13       | 14     | 14    | 14    | 14    | 14    | 14    |
| Dairy Cows                | 10    | 9     | 9     | 9     | 9     | 9        | 9      | 9     | 9     | 9     | 9     | 9     |
| Dairy Heifers             | 4     | 4     | 4     | 4     | 4     | 4        | 4      | 4     | 5     | 5     | 5     | 5     |
| Swine                     | 54    | 59    | 59    | 61    | 62    | 65       | 67     | 66    | 65    | 66    | 66    | 66    |
| Market <60 lbs.           | 18    | 20    | 20    | 20    | 21    | 22       | 20     | 19    | 19    | 19    | 19    | 19    |
| Market 60-119 lbs.        | 12    | 13    | 13    | 14    | 14    | 15       | 17     | 17    | 17    | 17    | 17    | 17    |
| Market 120-179 lbs.       | 9     | 11    | 11    | 11    | 11    | 12       | 13     | 13    | 12    | 12    | 13    | 13    |
| Market >180 lbs.          | 8     | 9     | 9     | 10    | 10    | 11       | 11     | 11    | 11    | 11    | 11    | 11    |
| Breeding Swine            | 7     | 7     | 6     | 6     | 6     | 6        | 6      | 6     | 6     | 6     | 6     | 6     |
| Beef cattle               | 82    | 90    | 85    | 82    | 83    | 83       | 82     | 81    | 80    | 79    | 77    | 76    |
| Feedlot Steers            | 17    | 18    | 17    | 17    | 17    | 17       | 16     | 16    | 16    | 16    | 15    | 15    |
| Feedlot Heifers           | 6     | 7     | 8     | 8     | 9     | 9        | 8      | 8     | 9     | 9     | 8     | 8     |
| Bulls NOF <sup>2</sup>    | 2     | 2     | 2     | 2     | 2     | 2        | 2      | 2     | 2     | 2     | 2     | 2     |
| Calves NOF                | 32    | 35    | 34    | 33    | 33    | 33       | 32     | 32    | 31    | 31    | 30    | 29    |
| Heifers NOF               | 10    | 12    | 9     | 8     | 8     | 8        | 8      | 9     | 8     | 8     | 7     | 8     |
| Steers NOF                | 3     | 4     | 5     | 5     | 5     | 5        | 5      | 5     | 5     | 5     | 5     | 5     |
| Cows NOF                  | 10    | 12    | 10    | 10    | 10    | 10       | 9      | 9     | 9     | 9     | 9     | 9     |
| Sheep                     | 11    | 9     | 7     | 6     | 6     | 6        | 6      | 6     | 6     | 5     | 5     | 5     |
| Goats                     | 3     | 2     | 2     | 3     | 3     | 3        | 3      | 3     | 3     | 3     | 3     | 3     |
| Poultry                   | 1,537 | 1,827 | 2,033 | 2,150 | 2,154 | 2,167    | 2,176  | 2,089 | 2,104 | 2,096 | 2,169 | 2,177 |
| Hens >1 yr.               | 273   | 299   | 334   | 348   | 350   | 347      | 340    | 341   | 342   | 339   | 347   | 353   |
| Pullets                   | 73    | 81    | 95    | 97    | 97    | 104      | 99     | 102   | 106   | 102   | 104   | 105   |
| Chickens                  | 7     | 8     | 8     | 8     | 8     | 8        | 8      | 8     | 7     | 7     | 7     | 7     |
| Broilers                  | 1,066 | 1,332 | 1,506 | 1,613 | 1,612 | 1,619    | 1,638  | 1,555 | 1,568 | 1,565 | 1,626 | 1,633 |
| Turkeys                   | 118   | 107   | 90    | 84    | 87    | 89       | 91     | 82    | 81    | 83    | 84    | 80    |
| Horses                    | 2     | 3     | 3     | 4     | 4     | 4        | 4      | 4     | 4     | 4     | 4     | 4     |

Source: EPA 2015

Note: Totals may not sum due to independent rounding. <sup>1</sup>Dairy cattle does not include dairy calves. <sup>2</sup>(NOF) Not on feed.

### Appendix Table A-3 State-Level Methane Emissions from Enteric Fermentation by Livestock Category in 2013

|                               | Beef cattle | Dairy cattle | Swine     | Horses | Total*       |
|-------------------------------|-------------|--------------|-----------|--------|--------------|
| State                         |             | MA           | AT CO2 eq |        |              |
| Alabama                       | 1.94        | 0.05         | 0.00      | 0.03   | 1.99         |
| Alaska                        | 0.02        | 0.00         | 0.00      | 0.00   | 0.02         |
| Arizona                       | 1.07        | 0.86         | 0.01      | 0.04   | 1.93         |
| Arkansas                      | 2.55        | 0.04         | 0.00      | 0.03   | 2.59         |
| California                    | 3.08        | 8.22         | 0.00      | 0.06   | 11.30        |
| Colorado                      | 4.30        | 0.60         | 0.03      | 0.05   | 4.91         |
| Connecticut                   | 0.02        | 0.09         | 0.00      | 0.01   | 0.11         |
| Delaware                      | 0.01        | 0.02         | 0.00      | 0.00   | 0.04         |
| Florida                       | 2.58        | 0.56         | 0.00      | 0.06   | 3.13         |
| Georgia                       | 1.43        | 0.38         | 0.01      | 0.03   | 1.81         |
| Hawaii                        | 0.22        | 0.01         | 0.00      | 0.00   | 0.23         |
| Idaho                         | 2.24        | 2.73         | 0.00      | 0.03   | 4.98         |
| Illinois                      | 1.40        | 0.40         | 0.17      | 0.03   | 1.80         |
| Indiana                       | 0.76        | 0.72         | 0.14      | 0.05   | 1.48         |
| Iowa                          | 5.23        | 0.96         | 0.76      | 0.03   | 6.19         |
| Kansas                        | 8 36        | 0.56         | 0.07      | 0.03   | 8 92         |
| Kentucky                      | 3 22        | 0.36         | 0.01      | 0.05   | 3 58         |
| Louisiana                     | 1 34        | 0.07         | 0.00      | 0.03   | 1 40         |
| Maine                         | 0.04        | 0.07         | 0.00      | 0.05   | 0.18         |
| Maryland                      | 0.04        | 0.14         | 0.00      | 0.01   | 0.10         |
| Massachusetts                 | 0.13        | 0.24         | 0.00      | 0.01   | 0.09         |
| Michigan                      | 0.02        | 1.62         | 0.00      | 0.01   | 2.00         |
| Minnesota                     | 1.00        | 1.02         | 0.04      | 0.04   | 2.27         |
| Mississippi                   | 1.09        | 0.06         | 0.29      | 0.03   | 1.52         |
| Missouri                      | 5.21        | 0.00         | 0.02      | 0.05   | 5.64         |
| Montana                       | 5.51        | 0.55         | 0.11      | 0.05   | 5.04<br>E 20 |
| Nobraska                      | 5.25        | 0.00         | 0.01      | 0.04   | 5.29         |
| Novada                        | 0.77        | 0.22         | 0.11      | 0.05   | 10.44        |
| New Hampshire                 | 0.77        | 0.15         | 0.00      | 0.01   | 0.09         |
| New Hampshile                 | 0.01        | 0.00         | 0.00      | 0.00   | 0.06         |
| New Jersey                    | 0.03        | 0.05         | 0.00      | 0.01   | 0.00         |
| New Wexto                     | 1.39        | 1.54         | 0.00      | 0.02   | 2.93         |
| New 101k                      | 0.41        | 2.93         | 0.00      | 0.04   | 3.34         |
| North Dalvota                 | 1.13        | 0.23         | 0.33      | 0.03   | 1.30         |
| North Dakota                  | 3.01        | 0.07         | 0.01      | 0.02   | 3.09         |
| Ohio                          | 1.16        | 1.09         | 0.08      | 0.05   | 2.25         |
| Okianoma                      | 6.27        | 0.22         | 0.08      | 0.07   | 6.49         |
| Oregon                        | 1.92        | 0.56         | 0.00      | 0.03   | 2.48         |
| Pennsylvania<br>Dha da Ialand | 0.76        | 2.53         | 0.04      | 0.05   | 3.29         |
| Knode Island                  | 0.00        | 0.00         | 0.00      | 0.00   | 0.01         |
| South Carolina                | 0.53        | 0.07         | 0.01      | 0.02   | 0.61         |
| South Dakota                  | 5.93        | 0.37         | 0.04      | 0.03   | 6.29         |
| Tennessee                     | 2.76        | 0.24         | 0.01      | 0.04   | 3.00         |
| 1 exas                        | 17.20       | 2.11         | 0.02      | 0.17   | 19.31        |
| Utah                          | 1.11        | 0.42         | 0.03      | 0.03   | 1.53         |
| Vermont                       | 0.05        | 0.58         | 0.00      | 0.01   | 0.63         |
| Virginia<br>Washington        | 2.18        | 0.45         | 0.01      | 0.04   | 2.64         |
| Wost Visciaia                 | 1.20        | 1.22         | 0.00      | 0.03   | 2.42         |
| west virginia                 | 0.64        | 0.04         | 0.00      | 0.01   | 0.68         |
| Wyomin                        | 1.32        | 5.47         | 0.01      | 0.05   | 6.79         |
| wyonning<br>Tatal             | 2.48        | 0.03         | 0.00      | 0.03   | 2.50         |
| IUIAI                         | 11/0        | 417          | 25        | 1.0    | 1588         |

Note: MMT CO<sub>2</sub> eq. is million metric tons carbon dioxide equivalent. Source: EPA 2015

\*State totals include all livestock categories



# Appendix Table A-4 State-Level Methane Emissions from Enteric Fermentation in 1990, 1995, 2000, 2005-2013

| State          |        |        |        |        |        | MMT (  | CO2 eq. |        |        |        |        |        |
|----------------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|
| Alabama        | 2.53   | 2.82   | 2.37   | 2.16   | 2.08   | 2.08   | 2.00    | 2.02   | 2.05   | 2.00   | 1.97   | 1.98   |
| Alaska         | 0.02   | 0.02   | 0.02   | 0.03   | 0.03   | 0.03   | 0.03    | 0.02   | 0.02   | 0.02   | 0.03   | 0.02   |
| Arizona        | 1.55   | 1.62   | 1.61   | 1.86   | 1.95   | 2.03   | 2.07    | 2.14   | 1.97   | 1.88   | 1.96   | 1.95   |
| Arkansas       | 2.82   | 3.17   | 2.91   | 3.01   | 2.82   | 2.82   | 2.90    | 2.85   | 2.96   | 2.80   | 2.72   | 2.58   |
| California     | 8.69   | 9.05   | 9.92   | 10.69  | 10.80  | 11.50  | 11.47   | 11.26  | 11.06  | 11.04  | 11.34  | 11.20  |
| Colorado       | 4.34   | 4.96   | 5.08   | 4.27   | 4.50   | 5.02   | 5.08    | 4.93   | 4.92   | 5.04   | 5.24   | 5.05   |
| Connecticut    | 0.17   | 0.16   | 0.15   | 0.12   | 0.11   | 0.11   | 0.11    | 0.11   | 0.10   | 0.10   | 0.10   | 0.10   |
| Delaware       | 0.05   | 0.05   | 0.05   | 0.04   | 0.04   | 0.04   | 0.04    | 0.04   | 0.04   | 0.04   | 0.04   | 0.04   |
| Florida        | 3.58   | 3.87   | 3.43   | 3.26   | 3.21   | 3.30   | 3.23    | 3.24   | 3.25   | 3.15   | 3.23   | 3.15   |
| Georgia        | 2.25   | 2.49   | 2.18   | 2.10   | 2.07   | 2.04   | 1.96    | 1.91   | 1.88   | 1.82   | 1.86   | 1.82   |
| Hawaii         | 0.32   | 0.30   | 0.29   | 0.28   | 0.29   | 0.28   | 0.27    | 0.27   | 0.26   | 0.26   | 0.25   | 0.23   |
| Idaho          | 2.87   | 3.34   | 3.74   | 4.16   | 4.28   | 4.50   | 4.58    | 4.56   | 4.58   | 4.76   | 4.81   | 5.01   |
| Illinois       | 2.71   | 2.67   | 2.38   | 2.17   | 2.17   | 2.12   | 2.03    | 1.98   | 1.91   | 1.78   | 1.72   | 1.81   |
| Indiana        | 1.95   | 1.87   | 1.55   | 1.50   | 1.51   | 1.57   | 1.56    | 1.51   | 1.58   | 1.55   | 1.51   | 1.47   |
| Iowa           | 6.49   | 6.44   | 5.96   | 5.76   | 6.05   | 6.26   | 6.31    | 6.35   | 6.29   | 6.19   | 6.14   | 6.24   |
| Kansas         | 7.79   | 9.46   | 9.48   | 9.74   | 9.98   | 9.88   | 10.06   | 9.89   | 9.56   | 9.73   | 9.45   | 9.17   |
| Kentucky       | 3.92   | 4.31   | 3.63   | 3.80   | 3.87   | 4.11   | 3.98    | 3.81   | 3.70   | 3.53   | 3.42   | 3.58   |
| Louisiana      | 1.85   | 1.74   | 1.62   | 1.57   | 1.51   | 1.55   | 1.60    | 1.60   | 1.53   | 1.43   | 1.40   | 1.39   |
| Maine          | 0.23   | 0.22   | 0.21   | 0.19   | 0.18   | 0.18   | 0.19    | 0.19   | 0.19   | 0.19   | 0.18   | 0.18   |
| Maryland       | 0.61   | 0.61   | 0.51   | 0.44   | 0.45   | 0.43   | 0.40    | 0.39   | 0.40   | 0.39   | 0.40   | 0.39   |
| Massachusetts  | 0.16   | 0.14   | 0.12   | 0.10   | 0.10   | 0.09   | 0.09    | 0.09   | 0.08   | 0.08   | 0.08   | 0.08   |
| Michigan       | 2.08   | 2.11   | 1.87   | 1.92   | 1.99   | 2.09   | 2.12    | 2.14   | 2.21   | 2.21   | 2.27   | 2.32   |
| Minnesota      | 4.35   | 4.40   | 4.11   | 3.77   | 3.75   | 3.85   | 3.86    | 3.89   | 3.89   | 3.84   | 3.82   | 3.88   |
| Mississippi    | 2.12   | 2.18   | 1.81   | 1.79   | 1.61   | 1.58   | 1.59    | 1.58   | 1.62   | 1.55   | 1.55   | 1.53   |
| Missouri       | 6.63   | 7.34   | 6.76   | 6.84   | 7.14   | 6.84   | 6.63    | 6.52   | 6.35   | 5.97   | 5.88   | 5.64   |
| Montana        | 4.00   | 4.98   | 4.88   | 4.47   | 4.58   | 4.98   | 5.34    | 5.26   | 5.13   | 5.13   | 5.09   | 5.30   |
| Nebraska       | 8.88   | 9.90   | 10.64  | 10.34  | 10.69  | 11.07  | 10.77   | 10.76  | 10.62  | 10.41  | 10.77  | 10.66  |
| Nevada         | 0.90   | 0.92   | 0.92   | 0.91   | 0.92   | 0.90   | 0.88    | 0.89   | 0.90   | 0.91   | 0.91   | 0.89   |
| New Hampshire  | 0.10   | 0.10   | 0.10   | 0.09   | 0.09   | 0.08   | 0.09    | 0.09   | 0.08   | 0.08   | 0.08   | 0.08   |
| New Jersey     | 0.14   | 0.13   | 0.10   | 0.08   | 0.08   | 0.07   | 0.07    | 0.08   | 0.07   | 0.06   | 0.06   | 0.06   |
| New Mexico     | 2.37   | 2.83   | 3.06   | 3.11   | 3.28   | 3.30   | 3.44    | 3.44   | 3.31   | 3.25   | 3.06   | 2.88   |
| New York       | 3.44   | 3.26   | 3.34   | 3.16   | 3.19   | 3.32   | 3.38    | 3.28   | 3.30   | 3.31   | 3.35   | 3.36   |
| North Carolina | 1.51   | 1.81   | 1.59   | 1.47   | 1.42   | 1.43   | 1.37    | 1.40   | 1.35   | 1.33   | 1.35   | 1.36   |
| North Dakota   | 2.83   | 3.44   | 3.23   | 3.10   | 3.09   | 3.20   | 3.09    | 3.08   | 3.00   | 2.99   | 2.91   | 3.10   |
| Ohio           | 2.55   | 2.45   | 2.15   | 2.28   | 2.29   | 2.24   | 2.27    | 2.37   | 2.35   | 2.27   | 2.31   | 2.28   |
| Oklahoma       | 7.24   | 8.08   | 7.39   | 7.69   | 7.97   | 7.76   | 7.78    | 7.86   | 8.01   | 7.53   | 6.70   | 6.50   |
| Oregon         | 2.46   | 2.82   | 2.65   | 2.73   | 2.68   | 2.52   | 2.65    | 2.42   | 2.47   | 2.54   | 2.53   | 2.47   |
| Pennsylvania   | 3.64   | 3.46   | 3.40   | 3.19   | 3.17   | 3.24   | 3.24    | 3.22   | 3.27   | 3.25   | 3.26   | 3.28   |
| Rhode Island   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01    | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   |
| South Carolina | 0.91   | 0.87   | 0.78   | 0.74   | 0.70   | 0.69   | 0.67    | 0.65   | 0.65   | 0.65   | 0.64   | 0.61   |
| South Dakota   | 5.35   | 6.44   | 6.28   | 6.26   | 6.32   | 6.27   | 6.17    | 6.23   | 6.32   | 6.16   | 6.08   | 6.35   |
| Tennessee      | 3.61   | 4.02   | 3.42   | 3.52   | 3.60   | 3.71   | 3.51    | 3.21   | 3.31   | 3.25   | 3.16   | 2.98   |
| Texas          | 20.76  | 24.75  | 22.55  | 22.48  | 23.16  | 22.83  | 22.63   | 23.08  | 22.73  | 22.42  | 20.74  | 19.55  |
| Utah           | 1.44   | 1.63   | 1.65   | 1.61   | 1.53   | 1.60   | 1.67    | 1.60   | 1.58   | 1.55   | 1.57   | 1.53   |
| Vermont        | 0.71   | 0.68   | 0.70   | 0.64   | 0.64   | 0.65   | 0.65    | 0.64   | 0.62   | 0.64   | 0.63   | 0.65   |
| Virginia       | 2.73   | 2.83   | 2.58   | 2.67   | 2.73   | 2.66   | 2.62    | 2.47   | 2.57   | 2.53   | 2.50   | 2.63   |
| Washington     | 2.57   | 2.61   | 2.52   | 2.23   | 2.31   | 2.39   | 2.34    | 2.34   | 2.24   | 2.35   | 2.38   | 2.42   |
| West Virginia  | 0.76   | 0.82   | 0.69   | 0.67   | 0.69   | 0.72   | 0.69    | 0.70   | 0.65   | 0.66   | 0.66   | 0.68   |
| Wisconsin      | 7.42   | 6.62   | 6.37   | 6.17   | 6.23   | 6.47   | 6.52    | 6.59   | 6.68   | 6.75   | 6.79   | 6.86   |
| Wyoming        | 2.05   | 2.57   | 2.69   | 2.31   | 2.44   | 2.69   | 2.55    | 2.57   | 2.51   | 2.49   | 2.57   | 2.51   |
| Total          | 158.44 | 173.40 | 165.42 | 163.51 | 166.29 | 169.12 | 168.55  | 167.53 | 166.13 | 163.87 | 161.49 | 159.82 |

Note: State level emissions do not include data for non-cattle. MMT CO<sub>2</sub> eq. is million metric tons carbon dioxide equivalent. Source: EPA 2015

| AD | pendix | Table A-5 | Cattle Po | pulation | <b>Categories</b> | Used for | Estimatina | Methane | <b>Emissions</b> |
|----|--------|-----------|-----------|----------|-------------------|----------|------------|---------|------------------|
|    |        |           |           |          |                   |          |            |         |                  |

| Dairy Cattle        | Beef Cattle                              |
|---------------------|------------------------------------------|
| Calves (4-6 mo)     | Calves (4-6 mo)                          |
| Heifer Replacements | Heifer Replacements                      |
| Cows                | Heifer and Steer Stockers                |
|                     | Animals in Feedlots (Heifers and Steers) |
|                     | Cows                                     |
|                     | Bulls <sup>1</sup>                       |

Source: EPA 2015

<sup>1</sup> Bulls (beef and dairy) are accounted for in a single category.



### Northern Great California West Southcentral Northeast Midwest Southeast Plains (lbs \* year)/ cow Year 1990 18,456 146,737 94,384 50,123 170,274 115,308 116,277 1991 18,534 149,227 95,175 49,752 174,570 117,551 117,666 1992 18,722 155,838 98,240 51,413 180,353 121,223 121,419 1993 18,852 155,984 98,723 52,135 179,289 121,622 124,859 1994 20,203 160,840 101,511 52,944 180,102 122,992 127,801 1995 19,573 159,752 102,563 52,913 184,544 125,823 129,453 1996 19,161 162,417 104,164 52,860 185,547 124,764 128,195 1997 19,829 164,233 105,060 52,846 191,086 128,219 130,930 1998 19,451 166,106 108,478 53,279 195,078 131,930 130,626 1999 20,781 166,741 111,222 53,903 197,570 133,766 134,263 116,222 2000 21,130 169,877 55,413 199,323 138,105 137,216 2001 20,904 168,163 116,523 55,120 204,650 136,009 139,062 21,277 172,668 121,146 56,623 208,267 139,990 140,620 2002 20,993 171,078 122,244 57,926 205,592 145,306 136,904 2003 170,757 21,139 122,811 61,092 207,408 147,148 140,976 2004 21,404 174,066 127,412 62,071 209,638 151,582 143,500 2005 21,815 175,077 131,933 61,406 213,221 152,633 145,258 2006 22,440 178,152 132,981 60,537 152,983 149,937 2007 213,130 22,344 176,679 136,074 61,381 217,190 151,903 148,871 2008 22,000 179,386 139,674 62,443 217,153 154,529 152,199 2009 23,025 184,540 143,910 63,000 220,024 157,303 150,623 2010 23,438 187,898 144,853 64,369 221,859 157,887 151,149 2011 23,457 190,031 149,516 66,056 227,856 162,671 152,473 2012 23,178 184,682 150,877 64,082 231,351 163,624 151,718 2013

### Appendix Table A-6 Dairy Lactation by Region'

Source: EPA 2015

<sup>1</sup> Beef lactation data developed using methodology described in EPA 2015.

### Appendix Table A-7 Typical Livestock Weights for 2013

| Cattle Type        | lbs   |
|--------------------|-------|
| Calves             | 270   |
| Dairy Cows         | 1,500 |
| Dairy Replacements | 899   |
| Beef Cows          | 1,348 |
| Bulls              | 2,022 |
| Beef Replacements  | 893   |
| Steer Stockers     | 721   |
| Heifer Stockers    | 711   |
| Steer Feedlot      | 1,017 |
| Heifer Feedlot     | 959   |
|                    |       |

Source: Feedstuffs (1998), Western Dairyman (1998), Enns (2008), Johnson (2010), NRC (1999), Holstein Association 2010, USDA (2013b,) EPA (2015).



### Appendix Table A-8 U.S. Feedlot Placements for 2013

|                | Jan   | Feb   | Mar   | Apr   | May   | Jun         | July        | Aug         | Sep   | Oct   | Nov   | Dec   | Total  |
|----------------|-------|-------|-------|-------|-------|-------------|-------------|-------------|-------|-------|-------|-------|--------|
| Weight Place   |       |       |       |       | Nur   | nber of and | imals place | ed, 1,000 i | bead  |       |       |       |        |
| < 600 lbs.     | 460   | 400   | 380   | 445   | 415   | 460         | 620         | 715         | 685   | 840   | 750   | 550   | 6,720  |
| 600 - 700 lbs. | 475   | 365   | 360   | 310   | 355   | 380         | 400         | 365         | 415   | 590   | 500   | 385   | 4,900  |
| 700 - 800 lbs. | 544   | 492   | 589   | 485   | 480   | 420         | 495         | 476         | 504   | 487   | 377   | 360   | 5,709  |
| > 800 lbs.     | 410   | 410   | 585   | 545   | 560   | 435         | 620         | 690         | 865   | 575   | 410   | 378   | 6,483  |
| Total          | 1,889 | 1,667 | 1,914 | 1,785 | 1,810 | 1,695       | 2,135       | 2,246       | 2,469 | 2,492 | 2,037 | 1,673 | 23,812 |

Source: USDA (2002f, 2001f, 2000f, 1999a, 1995a), EPA 2015.

Note: Totals may not sum due to independent rounding.

# Appendix Table A-9 Regional Estimates of Digestible Energy and Methane Conversion Rates for Foraging Animals 2007-2013

| Animal Type          | Data            | West | Central | Northeast | Southeast |
|----------------------|-----------------|------|---------|-----------|-----------|
| Beef Repl. Heif.     | DE 1            | 61.9 | 65.6    | 64.5      | 64.6      |
|                      | Ym <sup>2</sup> | 6.5% | 6.5%    | 6.5%      | 6.5%      |
| Steer Stockers       | DE              | 61.9 | 65.6    | 64.5      | 64.6      |
|                      | Ym              | 6.5% | 6.5%    | 6.5%      | 6.5%      |
| Heifer Stockers      | DE              | 61.9 | 65.6    | 64.5      | 64.6      |
|                      | Ym              | 6.5% | 6.5%    | 6.5%      | 6.5%      |
| Beef Cows            | DE              | 59.9 | 63.6    | 62.5      | 62.6      |
|                      | Ym              | 6.5% | 6.5%    | 6.5%      | 6.5%      |
| Beef Calves (4-6 mo) | DE              | 61.9 | 65.6    | 64.5      | 64.6      |
|                      | Ym              | 6.5% | 6.5%    | 6.5%      | 6.5%      |
| Bulls                | DE              | 59.9 | 63.6    | 62.5      | 62.6      |
|                      | Ym              | 6.5% | 6.5%    | 6.5%      | 6.5%      |

Source: EPA 2015

 $^{\rm 1}$  (DE) Digestible energy; in units of percent gross energy (GE) in MJ/Day.

 $^{2}$  (Y<sub>m</sub>) Methane conversion rate is the fraction of gross energy (GE) in feed converted to methane.

### Appendix Table A-10 Regional Estimates of Digestible Energy and Methane Conversion Rates for Dairy and Feedlot Cattle for 2013

| Animal Type           | Data            | California     | West       | Northern<br>Great Plains | Southcentral  | Northeast | Midwest | Southeast |
|-----------------------|-----------------|----------------|------------|--------------------------|---------------|-----------|---------|-----------|
| Dairy Repl. Heif.     | $DE^1$          | 63.7           | 63.7       | 63.7                     | 63.7          | 63.7      | 63.7    | 63.7      |
|                       | Ym <sup>2</sup> | 6.0%           | 6.0%       | 5.7%                     | 6.5%          | 6.4%      | 5.7%    | 7.0%      |
| Steer Feedlot         | DE              | 82.5           | 82.5       | 82.5                     | 82.5          | 82.5      | 82.5    | 82.5      |
|                       | Ym              | 3.9%           | 3.9%       | 3.9%                     | 3.9%          | 3.9%      | 3.9%    | 3.9%      |
| Heifer Feedlot        | DE              | 82.5           | 82.5       | 82.5                     | 82.5          | 82.5      | 82.5    | 82.5      |
|                       | Ym              | 3.9%           | 3.9%       | 3.9%                     | 3.9%          | 3.9%      | 3.9%    | 3.9%      |
| Dairy Cows            | DE              | 66.7           | 66.7       | 66.7                     | 66.7          | 66.7      | 66.7    | 66.7      |
|                       | Ym              | 5.9%           | 5.9%       | 5.6%                     | 6.4%          | 6.3%      | 5.6%    | 6.9%      |
| Dairy Calves (4-6 mo) | DE              | 63.7           | 63.7       | 63.7                     | 63.7          | 63.7      | 63.7    | 63.7      |
|                       | Ym              | 7.8% (4 mo), 8 | 8.03% (5 n | no), 8.27% (6 mo)        | - all regions |           |         |           |

Source: EPA 2015

<sup>1</sup> (DE) Digestible energy; in units of percent gross energy (GE) in megajoules (MJ) per day.

<sup>2</sup> (Y<sub>m</sub>) Methane conversion rate is the fraction of gross energy (GE) in feed converted to methane.



| Region & State(s) |                          |           |               |               |                |  |  |  |  |  |  |
|-------------------|--------------------------|-----------|---------------|---------------|----------------|--|--|--|--|--|--|
| West              | Northern Great<br>Plains | Midwest   | Northeast     | South Central | Southeast      |  |  |  |  |  |  |
| Alaska            | Colorado                 | Illinois  | Connecticut   | Arkansas      | Alabama        |  |  |  |  |  |  |
| Arizona           | Kansas                   | Indiana   | Delaware      | Louisiana     | Florida        |  |  |  |  |  |  |
| Hawaii            | Montana                  | Iowa      | Maine         | Oklahoma      | Georgia        |  |  |  |  |  |  |
| Idaho             | Nebraska                 | Michigan  | Maryland      | Texas         | Kentucky       |  |  |  |  |  |  |
| Nevada            | North Dakota             | Minnesota | Massachusetts |               | Mississippi    |  |  |  |  |  |  |
| New Mexico        | South Dakota             | Missouri  | New Hampshire |               | North Carolina |  |  |  |  |  |  |
| Oregon            | Wyoming                  | Ohio      | New Jersey    |               | South Carolina |  |  |  |  |  |  |
| Utah              |                          | Wisconsin | New York      |               | Tennessee      |  |  |  |  |  |  |
| Washington        | California               |           | Pennsylvania  |               | Virginia       |  |  |  |  |  |  |
|                   | California               |           | Rhode Island  |               |                |  |  |  |  |  |  |
|                   |                          |           | Vermont       |               |                |  |  |  |  |  |  |
|                   |                          |           | West Virginia |               |                |  |  |  |  |  |  |

# Appendix Table A-11 Definition of Regions for Characterizing the Diets of Dairy Cattle (all years) and Foraging Cattle 1990-2006

Source: EPA 2015

## Appendix Table A-12 Definition of Regions for Characterizing the Diets of Foraging Cattle from 2007-2013

| Region & State(s) |              |               |                |
|-------------------|--------------|---------------|----------------|
| West              | Central      | Northeast     | Southeast      |
| Alaska            | Illinois     | Connecticut   | Alabama        |
| Arizona           | Indiana      | Delaware      | Arkansas       |
| California        | Iowa         | Maine         | Florida        |
| Colorado          | Kansas       | Maryland      | Georgia        |
| Hawaii            | Michigan     | Massachusetts | Kentucky       |
| Idaho             | Minnesota    | New Hampshire | Louisiana      |
| Montana           | Missouri     | New Jersey    | Mississippi    |
| Nevada            | Nebraska     | New York      | North Carolina |
| New Mexico        | North Dakota | Pennsylvania  | Oklahoma       |
| Oregon            | Ohio         | Rhode Island  | South Carolina |
| Utah              | South Dakota | Vermont       | Tennessee      |
| Washington        | Wisconsin    | West Virginia | Texas          |
| Wyoming           |              |               | Virginia       |

Source: EPA 2015

| $Appendix Table A^{-1}$ mediane emissions nom cattle entent i crinchation, 1330-201 | App | endix | Table | A-13 | Methane | <b>Emissions</b> | from | Cattle Ente | eric Fe | rmentation, | 1990-20 | )13 |
|-------------------------------------------------------------------------------------|-----|-------|-------|------|---------|------------------|------|-------------|---------|-------------|---------|-----|
|-------------------------------------------------------------------------------------|-----|-------|-------|------|---------|------------------|------|-------------|---------|-------------|---------|-----|

|                           | 1990  | 1995  | 2000  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Animal Type               |       |       |       |       |       | kt C  | CH4   |       |       |       |       |       |
| Dairy                     | 1,574 | 1,498 | 1,519 | 1,503 | 1,534 | 1,601 | 1,622 | 1,639 | 1,626 | 1,643 | 1,668 | 1,664 |
| Calves                    | 62    | 59    | 59    | 54    | 55    | 58    | 58    | 58    | 57    | 57    | 58    | 58    |
| Cows                      | 1,242 | 1,183 | 1,209 | 1,197 | 1,219 | 1,271 | 1,289 | 1,304 | 1,287 | 1,301 | 1,324 | 1,325 |
| Replacements 7-11 months  | 58    | 56    | 55    | 56    | 57    | 60    | 60    | 61    | 62    | 63    | 62    | 61    |
| Replacements 12-23 months | 212   | 201   | 196   | 196   | 203   | 213   | 216   | 216   | 221   | 222   | 224   | 220   |
| Beef                      | 4,763 | 5,419 | 5,070 | 5,007 | 5,081 | 5,123 | 5,077 | 5,022 | 4,976 | 4,867 | 4,747 | 4,684 |
| Bulls                     | 196   | 225   | 215   | 214   | 220   | 217   | 216   | 214   | 215   | 211   | 205   | 202   |
| Calves                    | 182   | 193   | 186   | 179   | 177   | 175   | 171   | 169   | 169   | 166   | 160   | 158   |
| Cows                      | 2,884 | 3,222 | 3,058 | 3,056 | 3,079 | 3,089 | 3,070 | 3,002 | 2,970 | 2,921 | 2,855 | 2,774 |
| Replacements 7-11 months  | 69    | 85    | 74    | 80    | 82    | 82    | 79    | 78    | 75    | 74    | 75    | 77    |
| Replacements 12-23 months | 188   | 241   | 204   | 217   | 228   | 229   | 221   | 216   | 213   | 202   | 207   | 210   |
| Steer Stockers            | 563   | 662   | 509   | 473   | 475   | 480   | 475   | 491   | 475   | 439   | 415   | 434   |
| Heifer Stockers           | 306   | 375   | 323   | 299   | 299   | 296   | 290   | 300   | 301   | 283   | 267   | 269   |
| Total Feedlot Cattle      | 375   | 416   | 502   | 488   | 521   | 556   | 554   | 552   | 559   | 570   | 559   | 560   |
| Total                     | 6,338 | 6,917 | 6,589 | 6,510 | 6,615 | 6,725 | 6,700 | 6,661 | 6,602 | 6,510 | 6,416 | 6,348 |

Note: Totals may not sum due to independent rounding; kt CH4 is kilotons methane. Source: EPA 2015

## Appendix Table A-14 IPCC Emission Factors for Livestock

|                           | <b>Emission Factors</b> |
|---------------------------|-------------------------|
| Animal Type               | (kg CH4/ head/ year)    |
| DAIRY                     |                         |
| Calves                    | 12                      |
| Cows                      | 144                     |
| Replacements 7-11 months  | 46                      |
| Replacements 12-23 months | 69                      |
| BEEF                      |                         |
| Bulls                     | 98                      |
| Calves                    | 11                      |
| Cows                      | 95                      |
| Replacements 7-11 months  | 60                      |
| Replacements 12-23 months | 70                      |
| Steer Stockers            | 58                      |
| Heifer Stockers           | 60                      |
| Total Feedlot             | 43                      |
| Sheep                     | 8                       |
| Horses                    | 18                      |
| Swine                     | 2                       |
| Goats                     | 5                       |
| American Bison            | 82                      |
| Mules and Asses           | 10                      |

Note: kg CH<sub>4</sub> is kilograms methane. Source: EPA 2015, IPCC 2006.

### Appendix Table A-15 Summary of Greenhouse Gas Emissions from Managed' Waste by State in 2013

|                | CH <sub>4</sub> | $N_2O$     | Total |
|----------------|-----------------|------------|-------|
| State          | M               | IMT C02 eq |       |
| Alabama        | 0.44            | 0.13       | 0.57  |
| Alaska         | 0.01            | 0.00       | 0.01  |
| Arizona        | 1.44            | 0.28       | 1.73  |
| Arkansas       | 0.25            | 0.15       | 0.40  |
| California     | 10.24           | 1.46       | 11.70 |
| Colorado       | 1.15            | 0.76       | 1.90  |
| Connecticut    | 0.03            | 0.01       | 0.05  |
| Delaware       | 0.03            | 0.03       | 0.06  |
| Florida        | 0.79            | 0.07       | 0.86  |
| Georgia        | 0.80            | 0.20       | 1.00  |
| Hawaii         | 0.03            | 0.01       | 0.04  |
| Idaho          | 3.25            | 0.59       | 3.84  |
| Illinois       | 1.55            | 0.32       | 1.86  |
| Indiana        | 1.38            | 0.34       | 1.72  |
| Iowa           | 8.93            | 1.56       | 10.49 |
| Kansas         | 1.39            | 1.47       | 2.86  |
| Kentucky       | 0.29            | 0.08       | 0.38  |
| Louisiana      | 0.13            | 0.02       | 0.14  |
| Maine          | 0.05            | 0.02       | 0.06  |
| Maryland       | 0.11            | 0.06       | 0.18  |
| Massachusetts  | 0.02            | 0.01       | 0.02  |
| Michigan       | 1.50            | 0.43       | 1.92  |
| Minnesota      | 2.77            | 0.82       | 3.59  |
| Mississippi    | 0.55            | 0.11       | 0.66  |
| Missouri       | 1.06            | 0.27       | 1.33  |
| Montana        | 0.22            | 0.05       | 0.26  |
| Nebraska       | 1.30            | 1.61       | 2.91  |
| Nevada         | 0.19            | 0.03       | 0.21  |
| New Hampshire  | 0.02            | 0.01       | 0.03  |
| New Jersey     | 0.01            | 0.01       | 0.02  |
| New Mexico     | 1.97            | 0.21       | 2.19  |
| New York       | 0.83            | 0.30       | 1.13  |
| North Carolina | 4.60            | 0.40       | 5.00  |
| North Dakota   | 0.13            | 0.06       | 0.19  |
| Ohio           | 1.11            | 0.40       | 1.50  |
| Oklahoma       | 1.59            | 0.33       | 1.92  |
| Oregon         | 0.52            | 0.14       | 0.66  |
| Pennsylvania   | 0.81            | 0.36       | 1.17  |
| Rhode Island   | 0.00            | 0.00       | 0.01  |
| South Carolina | 0.32            | 0.06       | 0.37  |
| South Dakota   | 0.75            | 0.33       | 1.08  |
| Tennessee      | 0.19            | 0.05       | 0.23  |
| Texas          | 3.62            | 2.00       | 5.62  |
| Utah           | 0.72            | 0.13       | 0.84  |
| Vermont        | 0.15            | 0.05       | 0.21  |
| Virginia       | 0.28            | 0.10       | 0.37  |
| Washington     | 1.24            | 0.32       | 1.57  |
| West Virginia  | 0.04            | 0.02       | 0.06  |
| Wisconsin      | 2.50            | 1.11       | 3.60  |
| Wyoming        | 0.10            | 0.06       | 0.16  |
| Total          | 61 30           | 17 31      | 78 70 |

Note: MMT CO<sub>2</sub> eq. is million metric tons carbon dioxide equivalent. CH<sub>4</sub> is methane.  $N_2O$  is nitrous oxide. Source: EPA 2015

<sup>1</sup>Methane totals include emissions from grazed-land manure.



### Appendix Table A-16 Methane Emissions from Manure Management by State and Animal in 2013

|                | Dairy   | Beef cattle | Poultry | Swine   | Goats      | Horses  | Sheen  | Total   |
|----------------|---------|-------------|---------|---------|------------|---------|--------|---------|
|                | cattle  | Deer eathe  | roundy  | ownie   | Goulo      | 1101000 | oncep  | 10111   |
| State          |         |             |         | MMT (   | $CO_2 eq.$ |         |        |         |
| Alabama        | 0.0133  | 0.0602      | 0.3143  | 0.0460  | 0.0004     | 0.0048  | 0.0002 | 0.4392  |
| Alaska         | 0.0005  | 0.0005      | 0.0056  | 0.0001  | 0.0000     | 0.0001  | 0.0001 | 0.0069  |
| Arizona        | 1.2876  | 0.0414      | 0.0181  | 0.0858  | 0.0007     | 0.0080  | 0.0025 | 1.4441  |
| Arkansas       | 0.0073  | 0.0522      | 0.1214  | 0.0665  | 0.0004     | 0.0047  | 0.0002 | 0.2527  |
| California     | 9.9547  | 0.1175      | 0.1042  | 0.0399  | 0.0013     | 0.0111  | 0.0100 | 10.2387 |
| Colorado       | 0.7402  | 0.1095      | 0.1029  | 0.1810  | 0.0002     | 0.0059  | 0.0051 | 1.1448  |
| Connecticut    | 0.0253  | 0.0004      | 0.0068  | 0.0003  | 0.0000     | 0.0010  | 0.0001 | 0.0339  |
| Delaware       | 0.0067  | 0.0003      | 0.0221  | 0.0019  | 0.0000     | 0.0004  | 0.0001 | 0.0315  |
| Florida        | 0.5376  | 0.0799      | 0.1576  | 0.0024  | 0.0005     | 0.0099  | 0.0002 | 0.7881  |
| Georgia        | 0.1877  | 0.0444      | 0.5008  | 0.0611  | 0.0006     | 0.0056  | 0.0002 | 0.8005  |
| Hawaii         | 0.0103  | 0.0072      | 0.0084  | 0.0046  | 0.0001     | 0.0004  | 0.0002 | 0.0312  |
| Idaho          | 3 1659  | 0.0518      | 0.0166  | 0.0091  | 0.0001     | 0.0032  | 0.0028 | 3.2495  |
| Illinois       | 0.2116  | 0.0311      | 0.0119  | 1.2863  | 0.0002     | 0.0033  | 0.0006 | 1.5450  |
| Indiana        | 0.3529  | 0.0172      | 0.0389  | 0.9647  | 0.0002     | 0.0055  | 0.0006 | 1.3802  |
| Iowa           | 0.5249  | 0.1286      | 0.0482  | 8 2221  | 0.0004     | 0.0033  | 0.0021 | 8.9295  |
| Kansas         | 0.5689  | 0.2131      | 0.0017  | 0.5982  | 0.0003     | 0.0039  | 0.0008 | 1.3869  |
| Kentucky       | 0.0391  | 0.0662      | 0.0435  | 0.1371  | 0.0004     | 0.0074  | 0.0005 | 0.2943  |
| Louisiana      | 0.0159  | 0.0413      | 0.0618  | 0.0006  | 0.0002     | 0.0049  | 0.0002 | 0.1248  |
| Maine          | 0.0359  | 0.0008      | 0.0077  | 0.0004  | 0.0000     | 0.0007  | 0.0001 | 0.0457  |
| Maryland       | 0.0634  | 0.0033      | 0.0359  | 0.0063  | 0.0001     | 0.0015  | 0.0001 | 0.1108  |
| Massachusetts  | 0.0129  | 0.0005      | 0.0009  | 0.0011  | 0.0001     | 0.0011  | 0.0001 | 0.0166  |
| Michigan       | 1 1848  | 0.0159      | 0.0252  | 0.2660  | 0.0002     | 0.0047  | 0.0010 | 1 4977  |
| Minnesota      | 0.8083  | 0.0433      | 0.0412  | 1.8686  | 0.0002     | 0.0034  | 0.0016 | 2.7665  |
| Mississippi    | 0.0147  | 0.0455      | 0.2567  | 0 2284  | 0.0002     | 0.0047  | 0.0002 | 0 5503  |
| Missouri       | 0.1437  | 0.1075      | 0.0845  | 0.7209  | 0.0007     | 0.0061  | 0.0009 | 1.0643  |
| Montana        | 0.0445  | 0.1131      | 0.0103  | 0.0381  | 0.0001     | 0.0053  | 0.0028 | 0.2141  |
| Nebraska       | 0.1890  | 0.2538      | 0.0199  | 0.8344  | 0.0002     | 0.0035  | 0.0009 | 1.3017  |
| Nevada         | 0.1654  | 0.0166      | 0.0012  | 0.0005  | 0.0001     | 0.0013  | 0.0009 | 0.1860  |
| New Hampshire  | 0.0162  | 0.0003      | 0.0024  | 0.0004  | 0.0000     | 0.0005  | 0.0001 | 0.0199  |
| New Jersev     | 0.0066  | 0.0006      | 0.0025  | 0.0020  | 0.0000     | 0.0015  | 0.0001 | 0.0134  |
| New Mexico     | 1.9197  | 0.0302      | 0.0170  | 0.0000  | 0.0002     | 0.0027  | 0.0012 | 1.9710  |
| New York       | 0.7868  | 0.0088      | 0.0175  | 0.0151  | 0.0002     | 0.0050  | 0.0008 | 0.8342  |
| North Carolina | 0.0640  | 0.0232      | 0.3806  | 4.1306  | 0.0004     | 0.0035  | 0.0003 | 4.6026  |
| North Dakota   | 0.0319  | 0.0611      | 0.0017  | 0.0340  | 0.0000     | 0.0025  | 0.0009 | 0.1320  |
| Ohio           | 0.5041  | 0.0264      | 0.0336  | 0.5345  | 0.0003     | 0.0062  | 0.0014 | 1.1066  |
| Oklahoma       | 0.2018  | 0.1344      | 0.1036  | 1.1355  | 0.0005     | 0.0086  | 0.0009 | 1.5852  |
| Oregon         | 0.4455  | 0.0428      | 0.0246  | 0.0013  | 0.0002     | 0.0036  | 0.0025 | 0.5205  |
| Pennsylvania   | 0.4334  | 0.0171      | 0.0392  | 0.3099  | 0.0003     | 0.0066  | 0.0010 | 0.8076  |
| Rhode Island   | 0.0008  | 0.0001      | 0.0025  | 0.0002  | 0.0000     | 0.0001  | 0.0001 | 0.0037  |
| South Carolina | 0.0285  | 0.0165      | 0.1411  | 0.1240  | 0.0004     | 0.0045  | 0.0002 | 0.3152  |
| South Dakota   | 0.3005  | 0.1242      | 0.0066  | 0.3150  | 0.0001     | 0.0038  | 0.0032 | 0.7534  |
| Tennessee      | 0.0339  | 0.0566      | 0.0221  | 0.0694  | 0.0005     | 0.0048  | 0.0004 | 0.1877  |
| Texas          | 2.4767  | 0.5980      | 0.1691  | 0.3246  | 0.0077     | 0.0318  | 0.0123 | 3.6203  |
| Utah           | 0.4225  | 0.0244      | 0.0826  | 0.1800  | 0.0001     | 0.0032  | 0.0035 | 0.7163  |
| Vermont        | 0.1501  | 0.0011      | 0.0009  | 0.0003  | 0.0001     | 0.0006  | 0.0001 | 0.1531  |
| Virginia       | 0.0721  | 0.0451      | 0.0409  | 0.1133  | 0.0003     | 0.0047  | 0.0010 | 0.2775  |
| Washington     | 1.1650  | 0.0313      | 0.0369  | 0.0061  | 0.0002     | 0.0033  | 0.0006 | 1.2434  |
| West Virginia  | 0.0087  | 0.0131      | 0.0150  | 0.0007  | 0.0001     | 0.0013  | 0.0004 | 0.0394  |
| Wisconsin      | 2.3711  | 0.0308      | 0.0137  | 0.0733  | 0.0004     | 0.0055  | 0.0010 | 2.4957  |
| Wyoming        | 0.0214  | 0.0544      | 0.0008  | 0.0156  | 0.0001     | 0.0039  | 0.0044 | 0.1005  |
| Total          | 31.7743 | 3.0036      | 3.2233  | 23.0582 | 0.0199     | 0.2240  | 0.0715 | 61.3748 |

Note: MMT CO<sub>2</sub> eq. is million metric tons carbon dioxide equivalent. Managed manure includes emissions from grazed lands. Bison were not portioned at the State level because emissions were minimal. Source: EPA 2015



### Appendix Table A-17 Nitrous Oxide Emissions from Manure Management by State and Animal in 2013

|                | Dairy cattle | Beef cattle | Poultry                 | Swine  | Total   |
|----------------|--------------|-------------|-------------------------|--------|---------|
| State          | -            |             | MMT CO <sub>2</sub> eq. |        |         |
| Alabama        | 0.0022       | 0.0050      | 0.1201                  | 0.0027 | 0.1299  |
| Alaska         | 0.0002       | 0.0000      | 0.0018                  | 0.0000 | 0.0021  |
| Arizona        | 0.1144       | 0.1543      | 0.0019                  | 0.0045 | 0.2751  |
| Arkansas       | 0.0022       | 0.0000      | 0.1421                  | 0.0037 | 0.1481  |
| California     | 1.1133       | 0.2755      | 0.0394                  | 0.0026 | 1.4308  |
| Colorado       | 0.1128       | 0.5975      | 0.0081                  | 0.0207 | 0.7392  |
| Connecticut    | 0.0076       | 0.0002      | 0.0040                  | 0.0000 | 0.0118  |
| Delaware       | 0.0021       | 0.0002      | 0.0224                  | 0.0002 | 0.0248  |
| Florida        | 0.0455       | 0.0027      | 0.0192                  | 0.0001 | 0.0675  |
| Georgia        | 0.0232       | 0.0039      | 0.1612                  | 0.0035 | 0.1919  |
| Hawaii         | 0.0020       | 0.0007      | 0.0018                  | 0.0003 | 0.0048  |
| Idaho          | 0.4462       | 0.1332      | 0.0019                  | 0.0011 | 0.5824  |
| Illinois       | 0.0707       | 0.0906      | 0.0115                  | 0.1370 | 0.3098  |
| Indiana        | 0.1030       | 0.0574      | 0.0585                  | 0.1077 | 0.3268  |
| Iowa           | 0.1578       | 0.7224      | 0.0766                  | 0.5824 | 1.5392  |
| Kansas         | 0.1209       | 1.2832      | 0.0018                  | 0.0597 | 1.4656  |
| Kentucky       | 0.0170       | 0.0080      | 0.0379                  | 0.0090 | 0.0719  |
| Louisiana      | 0.0025       | 0.0024      | 0.0096                  | 0.0000 | 0.0145  |
| Maine          | 0.0125       | 0.0004      | 0.0047                  | 0.0000 | 0.0177  |
| Maryland       | 0.0217       | 0.0057      | 0.0339                  | 0.0006 | 0.0619  |
| Massachusetts  | 0.0048       | 0.0002      | 0.0010                  | 0.0001 | 0.0060  |
| Michigan       | 0.2720       | 0.0871      | 0.0235                  | 0.0317 | 0.4145  |
| Minnesota      | 0.3562       | 0.1755      | 0.0582                  | 0.2178 | 0.8076  |
| Mississippi    | 0.0030       | 0.0048      | 0.0829                  | 0.0132 | 0.1040  |
| Missouri       | 0.0534       | 0.0289      | 0.0974                  | 0.0772 | 0.2570  |
| Montana        | 0.0108       | 0.0207      | 0.0015                  | 0.0049 | 0.0379  |
| Nebraska       | 0.0366       | 1.4551      | 0.0184                  | 0.0903 | 1.6004  |
| Nevada         | 0.0177       | 0.0048      | 0.0018                  | 0.0000 | 0.0243  |
| New Hampshire  | 0.0054       | 0.0001      | 0.0018                  | 0.0000 | 0.0074  |
| New Jersey     | 0.0029       | 0.0002      | 0.0018                  | 0.0002 | 0.0050  |
| New Mexico     | 0.1969       | 0.0107      | 0.0019                  | 0.0000 | 0.2095  |
| New York       | 0.2555       | 0.0142      | 0.0124                  | 0.0018 | 0.2839  |
| North Carolina | 0.0130       | 0.0035      | 0.1299                  | 0.2466 | 0.3929  |
| North Dakota   | 0.0143       | 0.0272      | 0.0018                  | 0.0039 | 0.0472  |
| Ohio           | 0.1756       | 0.0929      | 0.0509                  | 0.0601 | 0.3796  |
| Oklahoma       | 0.0294       | 0.1987      | 0.0258                  | 0.0636 | 0.3176  |
| Oregon         | 0.0790       | 0.0377      | 0.0091                  | 0.0001 | 0.1259  |
| Pennsylvania   | 0.2138       | 0.0427      | 0.0546                  | 0.0341 | 0.3453  |
| Rhode Island   | 0.0004       | 0.0000      | 0.0018                  | 0.0000 | 0.0022  |
| South Carolina | 0.0038       | 0.0014      | 0.0391                  | 0.0074 | 0.0518  |
| South Dakota   | 0.0730       | 0.1811      | 0.0071                  | 0.0347 | 0.2959  |
| Tennessee      | 0.0106       | 0.0024      | 0.0203                  | 0.0047 | 0.0380  |
| Texas          | 0.2850       | 1.5660      | 0.0868                  | 0.0206 | 1.9583  |
| Utah           | 0.0704       | 0.0156      | 0.0092                  | 0.0210 | 0.1162  |
| Vermont        | 0.0511       | 0.0006      | 0.0010                  | 0.0000 | 0.0527  |
| Virginia       | 0.0195       | 0.0131      | 0.0417                  | 0.0075 | 0.0819  |
| Washington     | 0.1620       | 0.1396      | 0.0149                  | 0.0007 | 0.3173  |
| West Virginia  | 0.0037       | 0.0024      | 0.0142                  | 0.0001 | 0.0204  |
| Wisconsin      | 0.9368       | 0.1358      | 0.0132                  | 0.0082 | 1.0941  |
| Wyoming        | 0.0045       | 0.0401      | 0.0008                  | 0.0028 | 0.0482  |
| Total          | 5,739        | 7.647       | 1.583                   | 1.890  | 16.8586 |



 I trai
 5.139
 1.047
 1.553
 1.890
 16.852

 Note: Note: MMT CO2 eq. is million metric tons carbon dioxide equivalent. Other animal types were not portioned at the State level because emissions were minimal.
 Source: EPA 2015

## Appendix Table A-18 Waste Characteristics Data

| Animal Group              | Average<br>TAM <sup>1</sup> (kg) | Nitrogen, N <sub>ex</sub> ²<br>(kg/day per 1,000 kg mass) | Max Methane Generation<br>Potential, B <sub>o</sub><br>(m <sup>3</sup> CH <sub>4</sub> /kg VS added) | Volatile Solids,<br>VS<br>(kg/day per<br>1,000 kg mass) |
|---------------------------|----------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Dairy Cows                | 680                              | 0.62                                                      | 0.24                                                                                                 | 10.99                                                   |
| Dairy Heifers             | 406-408                          | 0.50                                                      | 0.17                                                                                                 | 10.08                                                   |
| Feedlot Steers            | 419-457                          | 0.34                                                      | 0.33                                                                                                 | 3.97                                                    |
| Feedlot Heifers           | 384-430                          | 0.35                                                      | 0.33                                                                                                 | 4.34                                                    |
| Bulls NOF <sup>3</sup>    | 831-917                          | 0.21                                                      | 0.17                                                                                                 | 5.03                                                    |
| Calves NOF                | 118                              | 0.45                                                      | 0.17                                                                                                 | 7.70                                                    |
| Heifers NOF               | 296-407                          | 0.32                                                      | 0.17                                                                                                 | 4.59                                                    |
| Steers NOF                | 314-335                          | 0.31                                                      | 0.17                                                                                                 | 8.16                                                    |
| Cows NOF                  | 554-611                          | 0.31                                                      | 0.17                                                                                                 | 7.66                                                    |
| American Bison            | 579                              | 0.70                                                      | 0.17                                                                                                 | 12.10                                                   |
| Market Swine <50 lbs.     | 13                               | 0.54                                                      | 0.48                                                                                                 | 8.80                                                    |
| Market Swine 50-119 lbs.  | 39                               | 0.54                                                      | 0.48                                                                                                 | 5.40                                                    |
| Market Swine 120-179 lbs. | 68                               | 0.54                                                      | 0.48                                                                                                 | 5.40                                                    |
| Market Swine >180 lbs.    | 91                               | 0.20                                                      | 0.48                                                                                                 | 5.40                                                    |
| Breeding Swine            | 198                              | 0.45                                                      | 0.48                                                                                                 | 2.70                                                    |
| Sheep                     | 80                               | 0.45                                                      | 0.19                                                                                                 | 8.30                                                    |
| Goats                     | 64                               | 0.79                                                      | 0.17                                                                                                 | 9.50                                                    |
| Horses                    | 450                              | 0.30                                                      | 0.33                                                                                                 | 6.10                                                    |
| Mules and Asses           | 130                              | 0.54                                                      | 0.33                                                                                                 | 7.20                                                    |
| Hens $\geq 1$ yr          | 1.8                              | 0.79                                                      | 0.39                                                                                                 | 10.20                                                   |
| Pullets                   | 1.8                              | 1.10                                                      | 0.39                                                                                                 | 10.20                                                   |
| Other Chickens            | 1.8                              | 0.96                                                      | 0.39                                                                                                 | 11.00                                                   |
| Broilers                  | 0.9                              | 0.63                                                      | 0.36                                                                                                 | 17.00                                                   |
| Turkeys                   | 6.8                              | 0.25                                                      | 0.36                                                                                                 | 8.50                                                    |

Source: EPA 2015. <sup>1</sup>(TAM) Typical animal mass. <sup>2</sup>(N<sub>ex</sub>) Nitrogen excretion. <sup>3</sup>(NOF) Not on feed.

# Appendix Table A-19 State Volatile Solids Production Rates in 2013

|                | Dairy Cow     | Dairy Heifer | Beef Cow<br>NOF <sup>1</sup> | Beef Heifer<br>NOF | Beef Steer<br>NOF | Beef Heifer<br>OF <sup>2</sup> | Beef Steer<br>OF |
|----------------|---------------|--------------|------------------------------|--------------------|-------------------|--------------------------------|------------------|
| State          |               |              | ke                           | / day/1,000 kg mi  | uss               | U1                             | 01               |
| Alabama        | 8.66          | 8.51         | 7.46                         | 7.41               | 7.49              | 4.40                           | 4.03             |
| Alaska         | 7.64          | 8.51         | 8.48                         | 8.59               | 8.61              | 4.40                           | 4.02             |
| Arizona        | 11.54         | 8.45         | 8.48                         | 8.28               | 8.61              | 4.36                           | 3.98             |
| Arkansas       | 7.96          | 8.51         | 7.46                         | 7.37               | 7.49              | NA                             | NA               |
| California     | 11.33         | 8.51         | 8.48                         | 8.16               | 8.61              | 4.40                           | 4.02             |
| Colorado       | 11.73         | 8.45         | 8.48                         | 8.03               | 8.61              | 4.36                           | 3.98             |
| Connecticut    | 10.63         | 8.49         | 7.51                         | 7.47               | 7.54              | 4.39                           | 4.02             |
| Delaware       | 10.30         | 8.49         | 7.51                         | 7.31               | 7.54              | 4.39                           | 4.02             |
| Florida        | 10.48         | 8.51         | 7.46                         | 7.43               | 7.49              | 4.40                           | 4.03             |
| Georgia        | 10.52         | 8.51         | 7.46                         | 7.38               | 7.49              | 4.40                           | 4.02             |
| Hawaii         | 8 46          | 8.51         | 8.48                         | 8.46               | 8.61              | 4.40                           | 4.03             |
| Idaho          | 11.48         | 8.45         | 8.48                         | 8.19               | 8.61              | 4.36                           | 3.98             |
| Illinois       | 10.26         | 8.46         | 7.12                         | 6.83               | 7.12              | 4.37                           | 3.99             |
| Indiana        | 10.98         | 8.46         | 7.12                         | 6.86               | 7.12              | 4.37                           | 3.99             |
| Iowa           | 11.09         | 8.46         | 7.12                         | 6.63               | 7.12              | 4.37                           | 3.99             |
| Kansas         | 11.05         | 8 46         | 7.12                         | 6.59               | 7.12              | 4.37                           | 3 99             |
| Kentucky       | 9.21          | 8 4 9        | 7 46                         | 7.22               | 7.49              | 4 39                           | 4 00             |
| Louisiana      | 8.32          | 8 51         | 7.46                         | 7.41               | 7.49              | 4 40                           | 4.03             |
| Maine          | 10.32         | 8.49         | 7.10                         | 7.32               | 7.54              | 4 39                           | 4.02             |
| Maryland       | 10.28         | 8.49         | 7.51                         | 7.28               | 7.54              | 4 39                           | 4.01             |
| Maesachusette  | 9.75          | 8.49         | 7.51                         | 7.20               | 7.54              | 4 30                           | 4.01             |
| Michigan       | 11.60         | 8.46         | 7.51                         | 6.70               | 7.54              | 4.37                           | 3.00             |
| Minnosota      | 10.36         | 8.40         | 7.12                         | 6.79               | 7.12              | 4.37                           | 2.00             |
| Mississippi    | 10.30<br>9.62 | 0.40         | 7.12                         | 0.70               | 7.12              | 4.37                           | 3.99             |
| Mississippi    | 0.03          | 0.51         | 7.40                         | 6.04               | 7.49              | 4.40                           | 4.03             |
| Montana        | 10.84         | 8.45         | 2 / LZ                       | 8.45               | 8.61              | 4.37                           | 3.09             |
| Nohrodro       | 10.04         | 0.45         | 0.40                         | 0.45               | 7.12              | 4.30                           | 3.90             |
| Nepraska       | 10.92         | 0.40         | 0.12                         | 0.03               | 0.12              | 4.37                           | 2.09             |
| Nevada         | 11.11         | 0.45         | 0.40                         | 0.34               | 0.01              | 4.30                           | 3.98             |
| New Hampshire  | 10.70         | 8.49         | 7.51                         | 7.35               | 7.54              | 4.39                           | 4.01             |
| New Jersey     | 9.89          | 8.49         | /.51                         | 7.39               | /.54              | 4.39                           | 4.02             |
| New Mexico     | 11.94         | 8.45         | 8.48                         | 8.25               | 8.61              | 4.36                           | 5.99             |
| New York       | 11.07         | 8.49         | /.51                         | 7.27               | 7.54              | 4.39                           | 4.01             |
| North Carolina | 10.77         | 8.49         | 7.46                         | /.39               | 7.49              | 4.39                           | 4.01             |
| North Dakota   | 10.15         | 8.46         | 7.12                         | 6.88               | 7.12              | 4.37                           | 4.00             |
| Ohio           | 10.50         | 8.46         | /.12                         | 6.85               | 7.12              | 4.37                           | 3.99             |
| Oklahoma       | 9.73          | 8.45         | /.46                         | /.1/               | 7.49              | 4.36                           | 3.98             |
| Oregon         | 10.58         | 8.51         | 8.48                         | 8.38               | 8.61              | 4.40                           | 4.02             |
| Pennsylvania   | 10.39         | 8.49         | 7.51                         | 7.25               | 7.54              | 4.39                           | 4.01             |
| Khode Island   | 10.15         | 8.49         | /.51                         | /.4/               | /.54              | 4.39                           | 4.01             |
| South Carolina | 9.61          | 8.51         | 7.46                         | 7.39               | 7.49              | 4.40                           | 4.03             |
| South Dakota   | 10.91         | 8.46         | 7.12                         | 6.79               | 7.12              | 4.37                           | 3.99             |
| 1 ennessee     | 9.46          | 8.49         | /.46                         | 7.35               | 7.49              | 4.39                           | 4.03             |
| Texas          | 11.07         | 8.45         | 7.46                         | 7.06               | 7.49              | 4.36                           | 3.98             |
| Utah           | 11.09         | 8.45         | 8.48                         | 8.31               | 8.61              | 4.36                           | 3.98             |
| Vermont        | 10.28         | 8.49         | 7.51                         | 7.21               | 7.54              | 4.39                           | 4.01             |
| Virginia       | 10.17         | 8.49         | 7.46                         | 7.31               | 7.49              | 4.39                           | 4.01             |
| Washington     | 11.60         | 8.51         | 8.48                         | 8.09               | 8.61              | 4.40                           | 4.02             |
| West Virginia  | 9.00          | 8.49         | 7.51                         | 7.34               | 7.54              | 4.39                           | 4.01             |
| Wisconsin      | 10.96         | 8.46         | 7.12                         | 6.93               | 7.12              | 4.37                           | 3.99             |
| Wyoming        | 10.86         | 8.45         | 8.48                         | 8.38               | 8.61              | 4.36                           | 3.98             |

Source: EPA 2015. <sup>1</sup>(NOF) Not on feed. <sup>2</sup>(OF) On feed.



| 1 here | 4           |
|--------|-------------|
|        | all de la   |
|        | in the same |

### Appendix Table A-20 State-Based Methane Conversion Factors<sup>1</sup> for Liquid Waste Management Systems in 2013

|                | Dairy     |               | Sw        | ine           | Beef              | Poultry   |
|----------------|-----------|---------------|-----------|---------------|-------------------|-----------|
|                | Anaerobic | Liquid/Slurry | Anaerobic | Liquid/Slurry | T invit / Channer | Anaerobic |
|                | Lagoon    | and Deep Pit  | Lagoon    | and Deep Pit  | Liquid/Siurry     | Lagoon    |
| State          | -         |               | perc      | ent           |                   |           |
| Alabama        | 75        | 37            | 75        | 36            | 38                | 75        |
| Alaska         | 47        | 15            | 47        | 15            | 15                | 47        |
| Arizona        | 78        | 57            | 77        | 47            | 52                | 74        |
| Arkansas       | 75        | 34            | 76        | 37            | 35                | 75        |
| California     | 73        | 32            | 72        | 31            | 41                | 74        |
| Colorado       | 65        | 22            | 68        | 24            | 24                | 65        |
| Connecticut    | 69        | 25            | 69        | 25            | 26                | 69        |
| Delaware       | 73        | 31            | 73        | 31            | 31                | 73        |
| Florida        | 79        | 55            | 79        | 53            | 53                | 79        |
| Georgia        | 76        | 39            | 75        | 38            | 37                | 75        |
| Hawaii         | 76        | 57            | 76        | 57            | 57                | 76        |
| Idaho          | 69        | 25            | 66        | 22            | 22                | 68        |
| Illinois       | 72        | 29            | 72        | 28            | 27                | 72        |
| Indiana        | 70        | 27            | 71        | 27            | 27                | 71        |
| Iowa           | 70        | 25            | 70        | 26            | 26                | 70        |
| Kansas         | 74        | 32            | 74        | 32            | 32                | 74        |
| Kentucky       | 73        | 31            | 73        | 31            | 30                | 73        |
| Louisiana      | 77        | 45            | 77        | 46            | 46                | 77        |
| Maine          | 63        | 21            | 63        | 21            | 21                | 64        |
| Maryland       | 72        | 30            | 72        | 30            | 31                | 73        |
| Massachusetts  | 67        | 24            | 68        | 25            | 25                | 68        |
| Michigan       | 67        | 23            | 67        | 24            | 24                | 67        |
| Minnesota      | 68        | 24            | 69        | 24            | 24                | 67        |
| Mississippi    | 76        | 40            | 76        | 39            | 41                | 76        |
| Missouri       | 73        | 30            | 73        | 30            | 30                | 74        |
| Montana        | 61        | 19            | 64        | 21            | 21                | 64        |
| Nebraska       | 72        | 27            | 72        | 27            | 27                | 72        |
| Nevada         | 70        | 26            | 71        | 27            | 25                | 70        |
| New Hampshire  | 64        | 22            | 65        | 22            | 22                | 65        |
| New Jersey     | 71        | 28            | 71        | 29            | 28                | 71        |
| New Mexico     | 73        | 31            | 71        | 28            | 30                | 70        |
| New York       | 65        | 23            | 66        | 23            | 23                | 66        |
| North Carolina | 73        | 31            | 75        | 36            | 30                | 73        |
| North Dakota   | 66        | 22            | 66        | 22            | 22                | 66        |
| Ohio           | 69        | 26            | 70        | 27            | 27                | 70        |
| Oklahoma       | 76        | 37            | 76        | 35            | 36                | 76        |
| Oregon         | 64        | 21            | 63        | 21            | 22                | 63        |
| Pennsylvania   | 69        | 26            | 70        | 27            | 27                | 70        |
| Rhode Island   | 69        | 26            | 69        | 26            | 26                | 69        |
| South Carolina | 75        | 37            | 75        | 38            | 36                | 75        |
| South Dakota   | 69        | 24            | 70        | 25            | 25                | 70        |
| Tennessee      | 73        | 31            | 74        | 32            | 31                | 73        |
| Texas          | 76        | 41            | 76        | 44            | 38                | 77        |
| Utah           | 65        | 22            | 68        | 24            | 24                | 65        |
| Vermont        | 63        | 21            | 63        | 21            | 21                | 63        |
| Virginia       | 71        | 28            | 72        | 31            | 29                | 71        |
| Washington     | 64        | 21            | 66        | 22            | 23                | 65        |
| West Virginia  | 69        | 26            | 70        | 26            | 26                | 69        |
| Wisconsin      | 66        | 23            | 68        | 24            | 23                | 67        |
| Wyoming        | 63        | 20            | 64        | 21            | 22                | 64        |

Source: EPA 2015, IPCC 2006. <sup>1</sup>(MCF) Methane conversion factors represent weighted average of multiple animal types.

### Appendix Table A-21 Maximum Methane Generation Potential, B<sub>o</sub>

| Animal Group           | m <sup>3</sup> CH <sub>4</sub> /kg VS added <sup>1</sup> | Source                                    |
|------------------------|----------------------------------------------------------|-------------------------------------------|
| Dairy Cows             | 0.24                                                     | Morris 1976                               |
| Dairy Heifers          | 0.17                                                     | Bryant et al. 1976                        |
| Feedlot Steers/Heifers | 0.33                                                     | Hashimoto 1981                            |
| NOF Beef               | 0.17                                                     | Hashimoto 1981                            |
| American Bison         | 0.17                                                     | Based on the beef NOF bull B <sub>0</sub> |
| Swine                  | 0.48                                                     | Hashimoto 1984                            |
| Sheep*                 | 0.34                                                     | EPA 1992                                  |
| Goats                  | 0.17                                                     | EPA 1992                                  |
| Horses                 | 0.33                                                     | EPA 1992                                  |
| Mules                  | 0.33                                                     | Based on the horse B <sub>0</sub>         |
| Broilers               | 0.36                                                     | Hill 1984                                 |
| Other Chickens         | 0.39                                                     | Hill 1982                                 |
| Turkeys                | 0.36                                                     | Hill 1984                                 |
| Dairy Cows             | 0.24                                                     | Morris 1976                               |

Source: EPA 2015, IPCC 2006.

 $^1\mbox{m}^3\mbox{ CH}_4/\mbox{kg VS}$  added is cubic meter methane per kilogram of volatile solids.

### Appendix Table A-22 Methane Conversion Factors for Dry Systems

|                               | Cool Climate<br>MCF <sup>1</sup> | Temperate<br>Climate MCF | Warm Climate<br>MCF |
|-------------------------------|----------------------------------|--------------------------|---------------------|
| Waste Management System       |                                  | percent                  |                     |
| Aerobic Treatment             | 0                                | 0                        | 0                   |
| Anaerobic Digester            | 0                                | 0                        | 0                   |
| Cattle Deep Litter (<1 month) | 3                                | 3                        | 30                  |
| Cattle Deep Litter (>1 month) | 21                               | 44                       | 76                  |
| Composting - In Vessel        | 0.5                              | 0.5                      | 0.5                 |
| Composting - Static Pile      | 0.5                              | 0.5                      | 0.5                 |
| Composting-Extensive/Passive  | 0.5                              | 1                        | 1.5                 |
| Composting-Intensive          | 0.5                              | 1                        | 1.5                 |
| Daily Spread                  | 0.1                              | 0.5                      | 1                   |
| Dry Lot                       | 1                                | 1.5                      | 5                   |
| Fuel                          | 10                               | 10                       | 10                  |
| Pasture                       | 1                                | 1.5                      | 2                   |
| Poultry with bedding          | 1.5                              | 1.5                      | 1.5                 |
| Poultry without bedding       | 1.5                              | 1.5                      | 1.5                 |
| Solid Storage                 | 2                                | 4                        | 5                   |

Source: EPA 2015, IPCC 2006. <sup>1</sup> MCF is methane conversion factor.

Chapter 2

### Appendix Table A-23 Methane Conversion Factors for Livestock Waste Emissions in 2013

|                | Beef<br>Feedlot<br>Heifer | Beef<br>Feedlot<br>Steer | Dairy<br>Cow | Dairy<br>Heifer | Swine<br>Market | Swine<br>Breeding | Layer | Broiler | Turkey | Sheep | Goats | Horses |
|----------------|---------------------------|--------------------------|--------------|-----------------|-----------------|-------------------|-------|---------|--------|-------|-------|--------|
| State          |                           | 1                        |              |                 |                 | percen            | at .  |         |        |       |       |        |
| Alabama        | 2.0                       | 2.0                      | 16.9         | 1.9             | 54.2            | 53.9              | 32.3  | 1.5     | 1.5    | 1.5   | 1.5   | 1.5    |
| Alaska         | 1.2                       | 1.2                      | 16.4         | 1.1             | 8.1             | 8.1               | 12.9  | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Arizona        | 21.0                      | 21.0                     | 79.5         | 21.9            | 77.3            | 75.5              | 61.0  | 3.0     | 3.0    | 3.0   | 3.0   | 3.0    |
| Arkansas       | 1.4                       | 1.4                      | 9.7          | 1.3             | 50.1            | 50.0              | 1.5   | 1.5     | 1.5    | 1.5   | 1.5   | 1.5    |
| California     | 2.0                       | 2.0                      | 49.8         | 1.8             | 47.7            | 47.7              | 10.2  | 1.5     | 1.5    | 1.5   | 1.5   | 1.5    |
| Colorado       | 1.1                       | 1.1                      | 47.2         | 1.1             | 29.2            | 29.0              | 39.6  | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Connecticut    | 1.3                       | 1.3                      | 13.2         | 1.2             | 8.3             | 8.3               | 4.9   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Delaware       | 1.3                       | 1.3                      | 14.3         | 1.3             | 34.7            | 34.7              | 5.1   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Florida        | 2.2                       | 2.2                      | 42.4         | 2.0             | 17.0            | 16.8              | 34.0  | 1.5     | 1.5    | 1.5   | 1.5   | 1.5    |
| Georgia        | 2.0                       | 2.0                      | 22.3         | 1.9             | 54.8            | 54.3              | 32.1  | 1.5     | 1.5    | 1.5   | 1.5   | 1.5    |
| Hawaii         | 2.2                       | 2.2                      | 57.7         | 2.1             | 40.7            | 40.7              | 20.2  | 1.5     | 1.5    | 1.5   | 1.5   | 1.5    |
| Idaho          | 1.1                       | 1.1                      | 48.0         | 1.1             | 25.3            | 25.3              | 41.3  | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Illinois       | 1.2                       | 1.2                      | 21.1         | 1.1             | 32.8            | 33.0              | 2.9   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Indiana        | 1.2                       | 1.2                      | 18.6         | 1.1             | 31.7            | 31.8              | 1.5   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Iowa           | 1.2                       | 1.2                      | 23.2         | 1.1             | 48.5            | 48.7              | 1.5   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Kansas         | 1.2                       | 1.2                      | 39.4         | 1.2             | 35.2            | 35.2              | 3.0   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Kentucky       | 1.3                       | 1.3                      | 5.6          | 1.2             | 48.7            | 48.7              | 5.1   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Louisiana      | 2.1                       | 2.1                      | 11.8         | 2.0             | 7.4             | 7.4               | 46.9  | 1.5     | 1.5    | 1.5   | 1.5   | 1.5    |
| Maine          | 1.2                       | 1.2                      | 10.8         | 1.2             | 10.8            | 10.8              | 4.6   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Maryland       | 1.3                       | 1.3                      | 12.0         | 1.2             | 33.5            | 33.9              | 5.1   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Massachusetts  | 1.3                       | 1.3                      | 10.4         | 1.2             | 14.9            | 14.8              | 4.8   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Michigan       | 1.1                       | 1.1                      | 27.1         | 1.1             | 28.6            | 28.3              | 2.8   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Minnesota      | 1.1                       | 1.1                      | 16.7         | 1.1             | 30.6            | 30.5              | 1.5   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Mississippi    | 2.0                       | 2.0                      | 11.8         | 1.9             | 57.0            | 58.2              | 46.4  | 1.5     | 1.5    | 1.5   | 1.5   | 1.5    |
| Missouri       | 1.2                       | 1.2                      | 17.5         | 1.2             | 32.0            | 32.2              | 1.5   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Montana        | 1.1                       | 1.1                      | 29.5         | 1.1             | 26.2            | 26.2              | 38.7  | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Nebraska       | 1.2                       | 1.2                      | 31.2         | 1.1             | 31.8            | 31.8              | 2.9   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Nevada         | 13.1                      | 13.1                     | 64.4         | 12.9            | 35.6            | 35.2              | 13.5  | 2.5     | 2.5    | 2.0   | 2.0   | 2.0    |
| New Hampshire  | 12.8                      | 12.8                     | 22.2         | 12.8            | 23.0            | 22.9              | 16.2  | 2.5     | 2.5    | 2.0   | 2.0   | 2.0    |
| New Jersey     | 14.7                      | 14.7                     | 22.3         | 14.8            | 37.5            | 37.5              | 18.5  | 2.5     | 2.5    | 2.0   | 2.0   | 2.0    |
| New Mexico     | 15.1                      | 15.1                     | 66.6         | 15.4            | 14.4            | 14.6              | 55.4  | 2.5     | 2.5    | 2.0   | 2.0   | 2.0    |
| New York       | 1.2                       | 1.2                      | 11.2         | 1.2             | 25.8            | 25.9              | 4.7   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| North Carolina | 1.3                       | 1.3                      | 12.9         | 1.2             | 56.4            | 56.2              | 31.5  | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| North Dakota   | 1.1                       | 1.1                      | 17.4         | 1.1             | 27.8            | 27.4              | 2.8   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Ohio           | 1.2                       | 1.2                      | 17.8         | 1.1             | 31.0            | 31.0              | 1.5   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Oklahoma       | 1.1                       | 1.1                      | 45.4         | 1.6             | 56.7            | 57.1              | 46.0  | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Oregon         | 1.3                       | 1.3                      | 34.5         | 1.2             | 15.5            | 15.5              | 16.8  | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Pennsylvania   | 1.3                       | 1.3                      | 7.6          | 1.2             | 31.3            | 30.9              | 1.5   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Rhode Island   | 1.3                       | 1.3                      | 8.0          | 1.2             | 10.2            | 10.2              | 4.9   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| South Carolina | 2.0                       | 2.0                      | 18.4         | 1.9             | 56.4            | 56.1              | 45.8  | 1.5     | 1.5    | 1.5   | 1.5   | 1.5    |
| South Dakota   | 1.1                       | 1.1                      | 30.1         | 1.1             | 31.1            | 31.1              | 2.9   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Tennessee      | 1.3                       | 1.3                      | 7.3          | 1.2             | 43.9            | 43.6              | 5.1   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Texas          | 1.7                       | 1./                      | 51.9         | 1.6             | 50.3            | 50.4              | 10.5  | 1.5     | 1.5    | 1.5   | 1.5   | 1.5    |
| Utah           | 1.1                       | 1.1                      | 42.7         | 1.1             | 30.7            | 27.6              | 39.6  | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Vermont        | 1.2                       | 1.2                      | 10.8         | 1.2             | 11.4            | 11.5              | 4.6   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Virginia       | 1.3                       | 1.3                      | 7.4          | 1.2             | 50.5            | 50.3              | 5.0   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Washington     | 1.3                       | 1.3                      | 38.4         | 1.2             | 17.1            | 16.7              | 9.1   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| West Virginia  | 14.2                      | 14.2                     | 22.4         | 14.2            | 27.1            | 27.0              | 17.6  | 2.5     | 2.5    | 2.0   | 2.0   | 2.0    |
| Wisconsin      | 1.1                       | 1.1                      | 16.3         | 1.1             | 27.0            | 26.9              | 2.8   | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |
| Wyoming        | 1.1                       | 1.1                      | 33.1         | 1.1             | 16.7            | 16.7              | 38.7  | 1.5     | 1.5    | 1.0   | 1.0   | 1.0    |

Wy of mig 111 + 111 + 551 + 111 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 + 167 +



### Appendix Table A-24 Direct Nitrous Oxide Emission Factors for 2013

| Waste Management System              | Direct N <sub>2</sub> O Emission Factor |
|--------------------------------------|-----------------------------------------|
|                                      | kg N2O-N/ kg Kjdl N1                    |
| Aerobic Treatment (forced aeration)  | 0.005                                   |
| Aerobic Treatment (natural aeration) | 0.01                                    |
| Anaerobic Digester                   | 0                                       |
| Anaerobic Lagoon                     | 0                                       |
| Cattle Deep Bed (active mix)         | 0.07                                    |
| Cattle Deep Bed (no mix)             | 0.01                                    |
| Composting in vessel                 | 0.006                                   |
| Composting intensive                 | 0.1                                     |
| Composting passive                   | 0.01                                    |
| Composting static                    | 0.006                                   |
| Daily Spread                         | 0                                       |
| Deep Pit                             | 0.002                                   |
| Dry Lot                              | 0.02                                    |
| Fuel                                 | 0                                       |
| Liquid/Slurry                        | 0.005                                   |
| Pasture <sup>2</sup>                 | 0                                       |
| Poultry with bedding                 | 0.001                                   |
| Poultry without bedding              | 0.001                                   |
| Solid Storage                        | 0.005                                   |



Note: N<sub>2</sub>O is nitrous oxide. Source: EPA 2015, IPCC 2006.

<sup>1</sup> kg N<sub>2</sub>O-N/kg Kjdl N is kilograms nitrogen in nitrous oxide per kilograms kjeldahl nitrogen.

<sup>2</sup>Calculated using Tier 3 DayCent Model simulations.

## Appendix Table A-25 Nitrogen in Livestock Waste on Grazed Lands

| Year | MMTN |
|------|------|
| 1990 | 4.1  |
| 1991 | 4.1  |
| 1992 | 4.3  |
| 1993 | 4.3  |
| 1994 | 4.4  |
| 1995 | 4.5  |
| 1996 | 4.5  |
| 1997 | 4.4  |
| 1998 | 4.3  |
| 1999 | 4.2  |
| 2000 | 4.1  |
| 2001 | 4.1  |
| 2002 | 4.1  |
| 2003 | 4.1  |
| 2004 | 4.1  |
| 2005 | 4.1  |
| 2006 | 4.2  |
| 2007 | 4.0  |
| 2008 | 4.0  |
| 2009 | 4.0  |
| 2010 | 3.9  |
| 2011 | 3.8  |
| 2012 | 3.7  |
| 2013 | 3.7  |

Note: MMT N is million metric tons nitrogen. Source: EPA 2015



### Appendix Table A-26 MLRA-Level Estimates of Mean Annual Soil Carbon Stock Changes from Non-Federal Grasslands, 2003-2007

| MLRA <sup>1</sup> | Area      | Total dSOC  | 97   | 47.882    | -12 3   |
|-------------------|-----------|-------------|------|-----------|---------|
|                   | ha        | Gg CO2 ea.2 | 98   | 301 989   | -12.5   |
| 1                 | 54,597    | -52.8       | 99   | 63.472    | -18.7   |
| 2                 | 243.632   | -333.8      | 101  | 154.267   | -35.1   |
| 3                 | 17,773    | -86.5       | 103  | 328,349   | -218.8  |
| 5                 | 263,473   | -345.0      | 104  | 140,345   | -166.1  |
| 6                 | 179,315   | -35.1       | 105  | 626,326   | -425.5  |
| 7                 | 409,089   | -4.4        | 106  | 572,613   | -144.4  |
| 8                 | 2,379,429 | -4.3        | 109  | 926,578   | -483.5  |
| 9                 | 796,574   | 41.0        | 110  | 66,940    | -41.0   |
| 10                | 2,071,584 | 142.9       | 112  | 2,230,417 | -661.1  |
| 11                | 722,976   | 73.4        | 113  | 277,306   | -143.2  |
| 12                | 145,949   | -1.5        | 117  | 240,831   | -88.5   |
| 13                | 625,994   | 24.5        | 119  | 341,603   | -70.6   |
| 14                | 140,555   | -33.4       | 121  | 632,837   | -315.7  |
| 15                | 2,036,110 | -174.5      | 122  | 940,743   | -464.0  |
| 17                | 1,025,755 | -95.4       | 123  | 339,212   | -176.0  |
| 18                | 850,862   | -14.4       | 124  | 250,471   | -89.7   |
| 19                | 167,401   | -51.9       | 125  | 201,304   | -77.0   |
| 20                | 710,349   | -71.3       | 126  | 385,164   | -163.5  |
| 21                | 578,811   | -89.1       | 127  | 189,799   | -46.5   |
| 23                | 987,306   | 6.0         | 128  | 861,793   | -490.2  |
| 24                | 531,483   | 162.7       | 129  | 204,725   | -115.4  |
| 25                | 1,567,731 | 133.9       | 134  | 737,073   | -603.6  |
| 26                | 310,276   | 6.3         | 136  | 1,117,885 | -865.2  |
| 27                | 799,461   | 154.2       | 13/  | 46,206    | -43.2   |
| 29                | 1 102 029 | -20.3       | 130  | 144,250   | -37.0   |
| 30                | 1,195,926 | -39.1       | 139  | 144,352   | -61.1   |
| 32                | 807 861   | -22.0       | 140  | 8 165     | -130.4  |
| 35                | 8 939 750 | 568.5       | 142  | 126 775   | -2.4    |
| 36                | 1.339.729 | 35.6        | 143  | 39.121    | -15.6   |
| 38                | 1,678,101 | -57.5       | 145  | 10,074    | -5.0    |
| 39                | 300,000   | 36.2        | 147  | 404,552   | -180.0  |
| 40                | 2,644,850 | 113.4       | 148  | 338,595   | -126.7  |
| 41                | 2,032,033 | -11.1       | 151  | 78,578    | 1.8     |
| 42                | 7,117,114 | 231.7       | 154  | 260,436   | -82.6   |
| 44                | 1,386,170 | 155.0       | 155  | 1,209,929 | -356.8  |
| 46                | 2,334,195 | 473.0       | 102A | 802,261   | -627.7  |
| 47                | 1,299,930 | 198.1       | 102B | 56,522    | -67.9   |
| 49                | 1,451,736 | 143.7       | 102C | 451,346   | -247.1  |
| 51                | 576,854   | -128.6      | 107A | 62,367    | -213.7  |
| 52                | 2,037,706 | 825.3       | 107B | 341,131   | -1011.1 |
| 54                | 4,052,914 | 272.8       | 108A | 42,462    | -27.2   |
| 56                | 272,722   | -92.5       | 108B | 106,015   | -92.6   |
| 57                | 217,910   | -49.5       | 108C | 143,023   | -321./  |
| 61                | 237,646   | 17.1        | 1111 | 250,418   | -5/2.5  |
| 62                | 133,877   | 54.6        | 111A | 144,040   | -95.2   |
| 65                | 4 703 281 | -109.5      | 1110 | 41 763    | -42.9   |
| 66                | 970.886   | -45.6       | 111D | 59 226    | -12.2   |
| 69                | 2 245 770 | 71.1        | 111E | 27 900    | -22.7   |
| 71                | 1.012.309 | 167.5       | 114A | 104 534   | -42.2   |
| 72                | 2.419.203 | 70.8        | 114B | 121,249   | -71.0   |
| 73                | 2,267,127 | 248.5       | 115A | 53.780    | -36.7   |
| 74                | 607,367   | -61.8       | 115B | 305,634   | -137.4  |
| 75                | 323,527   | -31.5       | 115C | 345,948   | -216.1  |
| 76                | 1,510,595 | -188.1      | 116A | 2,126,540 | -821.3  |
| 79                | 411,928   | -27.4       | 116B | 507,825   | -294.8  |
| 85                | 1,369,323 | -235.2      | 116C | 66,379    | -28.6   |
| 88                | 63,503    | -81.8       | 118A | 616,870   | -162.0  |
| 89                | 31,158    | -18.9       | 118B | 291,406   | -82.2   |
| 92                | 36,473    | -22.0       | 120A | 265,303   | -171.6  |
| 96                | 51,706    | -16.5       | 120B | 63,592    | -25.8   |



-18.7 -35.1 -218.8 -166.1 -425.5 -144.4 -483.5 -41.0 -661.1 -143.2 -88.5 -70.6 -315.7 -464.0 -176.0 -89.7 -77.0 -163.5 -46.5 -490.2 -115.4 -603.6 -865.2 -43.2 -37.6 -81.1 -130.4 -2.4 -68.8 -15.6 -5.0 -180.0 -126.7 1.8 -82.6 -356.8 -627.7 -67.9 -247.1 -213.7

-63.2 -347.1 53.3 -2.8 97.6 120.7 -37.7 13.3 -1.0 123.5 1.2 55.5 -7.5 35.3 -131.7 -134.3 -30.2 -373.1 5.5 -23.5 -149.7 -168.5 -208.1 -85.5 -43.2 -102.6 -50.0 -15.9 -91.8 -195.9 -10889.0

### Continued - Appendix Table A-26 MLRA-Level Estimates of Mean Annual Soil Carbon Stock Changes from Non-Federal Grasslands, 2003-2007



| 120C                                                                                                                                                                                                                                                                                                                                                                                              | 11,235                                                                                                                                                                                                                                                                                                                                                                                                              | -1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78C                                                                                                       | 2,445,635                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 130A                                                                                                                                                                                                                                                                                                                                                                                              | 12,035                                                                                                                                                                                                                                                                                                                                                                                                              | -8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80A                                                                                                       | 1,963,077                                                                |
| 130B                                                                                                                                                                                                                                                                                                                                                                                              | 203,692                                                                                                                                                                                                                                                                                                                                                                                                             | -114.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80B                                                                                                       | 968,445                                                                  |
| 131A                                                                                                                                                                                                                                                                                                                                                                                              | 241,071                                                                                                                                                                                                                                                                                                                                                                                                             | -158.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81A                                                                                                       | 2,866,367                                                                |
| 131B                                                                                                                                                                                                                                                                                                                                                                                              | 42,168                                                                                                                                                                                                                                                                                                                                                                                                              | -18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81B                                                                                                       | 1,940,970                                                                |
| 131C                                                                                                                                                                                                                                                                                                                                                                                              | 140,088                                                                                                                                                                                                                                                                                                                                                                                                             | -71.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81C                                                                                                       | 1,236,724                                                                |
| 131D                                                                                                                                                                                                                                                                                                                                                                                              | 29,985                                                                                                                                                                                                                                                                                                                                                                                                              | -12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81D                                                                                                       | 516,702                                                                  |
| 133A                                                                                                                                                                                                                                                                                                                                                                                              | 1,441,544                                                                                                                                                                                                                                                                                                                                                                                                           | -1125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82A                                                                                                       | 401,734                                                                  |
| 133B                                                                                                                                                                                                                                                                                                                                                                                              | 1,187,959                                                                                                                                                                                                                                                                                                                                                                                                           | -354.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82B                                                                                                       | 57,923                                                                   |
| 135A                                                                                                                                                                                                                                                                                                                                                                                              | 381,841                                                                                                                                                                                                                                                                                                                                                                                                             | -304.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83A                                                                                                       | 1,706,897                                                                |
| 135B                                                                                                                                                                                                                                                                                                                                                                                              | 309.250                                                                                                                                                                                                                                                                                                                                                                                                             | -82.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83B                                                                                                       | 1.463.751                                                                |
| 144A                                                                                                                                                                                                                                                                                                                                                                                              | 119,969                                                                                                                                                                                                                                                                                                                                                                                                             | -55.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83C                                                                                                       | 755.825                                                                  |
| 144B                                                                                                                                                                                                                                                                                                                                                                                              | 79,998                                                                                                                                                                                                                                                                                                                                                                                                              | -46.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83D                                                                                                       | 129,375                                                                  |
| 149A                                                                                                                                                                                                                                                                                                                                                                                              | 31,531                                                                                                                                                                                                                                                                                                                                                                                                              | -6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83E                                                                                                       | 659,343                                                                  |
| 149B                                                                                                                                                                                                                                                                                                                                                                                              | 3.112                                                                                                                                                                                                                                                                                                                                                                                                               | -0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84A                                                                                                       | 875.391                                                                  |
| 150A                                                                                                                                                                                                                                                                                                                                                                                              | 1.165.952                                                                                                                                                                                                                                                                                                                                                                                                           | -111.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84B                                                                                                       | 745.691                                                                  |
| 150B                                                                                                                                                                                                                                                                                                                                                                                              | 249,079                                                                                                                                                                                                                                                                                                                                                                                                             | -13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84C                                                                                                       | 113,856                                                                  |
| 152A                                                                                                                                                                                                                                                                                                                                                                                              | 38,047                                                                                                                                                                                                                                                                                                                                                                                                              | -21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86A                                                                                                       | 1 453 945                                                                |
| 152B                                                                                                                                                                                                                                                                                                                                                                                              | 79,521                                                                                                                                                                                                                                                                                                                                                                                                              | -57.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86B                                                                                                       | 351 296                                                                  |
| 153A                                                                                                                                                                                                                                                                                                                                                                                              | 86,206                                                                                                                                                                                                                                                                                                                                                                                                              | -44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87A                                                                                                       | 1 544 144                                                                |
| 153B                                                                                                                                                                                                                                                                                                                                                                                              | 9,909                                                                                                                                                                                                                                                                                                                                                                                                               | -11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87B                                                                                                       | 410 138                                                                  |
| 153C                                                                                                                                                                                                                                                                                                                                                                                              | 15.220                                                                                                                                                                                                                                                                                                                                                                                                              | -11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90 A                                                                                                      | 265.868                                                                  |
| 153D                                                                                                                                                                                                                                                                                                                                                                                              | 14.083                                                                                                                                                                                                                                                                                                                                                                                                              | -13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90B                                                                                                       | 248 178                                                                  |
| 156A                                                                                                                                                                                                                                                                                                                                                                                              | 67.768                                                                                                                                                                                                                                                                                                                                                                                                              | -8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90D<br>91 A                                                                                               | 161 283                                                                  |
| 156B                                                                                                                                                                                                                                                                                                                                                                                              | 104 655                                                                                                                                                                                                                                                                                                                                                                                                             | -17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01R                                                                                                       | 52.109                                                                   |
| 22 A                                                                                                                                                                                                                                                                                                                                                                                              | 82 010                                                                                                                                                                                                                                                                                                                                                                                                              | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 910                                                                                                       | 120,129                                                                  |
| 28A                                                                                                                                                                                                                                                                                                                                                                                               | 1 330 232                                                                                                                                                                                                                                                                                                                                                                                                           | 262.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94A<br>04P                                                                                                | (1.915                                                                   |
| 28B                                                                                                                                                                                                                                                                                                                                                                                               | 305 998                                                                                                                                                                                                                                                                                                                                                                                                             | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94D                                                                                                       | 25.009                                                                   |
| 34 A                                                                                                                                                                                                                                                                                                                                                                                              | 3 017 610                                                                                                                                                                                                                                                                                                                                                                                                           | 140.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05 A                                                                                                      | 25,098                                                                   |
| 34B                                                                                                                                                                                                                                                                                                                                                                                               | 731 884                                                                                                                                                                                                                                                                                                                                                                                                             | 133.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95A<br>05D                                                                                                | 202.050                                                                  |
| 43A                                                                                                                                                                                                                                                                                                                                                                                               | 364 330                                                                                                                                                                                                                                                                                                                                                                                                             | -26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           | 100 415 046                                                              |
| 43B                                                                                                                                                                                                                                                                                                                                                                                               | 501,550                                                                                                                                                                                                                                                                                                                                                                                                             | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total                                                                                                     | 180,415,840                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                   | 2 443 145                                                                                                                                                                                                                                                                                                                                                                                                           | 375.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note: dS()() is discolve                                                                                  | d soil organic carbon                                                    |
| 430                                                                                                                                                                                                                                                                                                                                                                                               | 2,443,145                                                                                                                                                                                                                                                                                                                                                                                                           | 375.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>1</sup> MLRA = Major Land                                                                            | d soil organic carbon.<br>Resource Area                                  |
| 43C<br>48 A                                                                                                                                                                                                                                                                                                                                                                                       | 2,443,145<br>233,023<br>1,536,456                                                                                                                                                                                                                                                                                                                                                                                   | 375.3<br>-35.6<br>379.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr.                           | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>48A<br>48B                                                                                                                                                                                                                                                                                                                                                                                 | 2,443,145<br>233,023<br>1,536,456<br>317,086                                                                                                                                                                                                                                                                                                                                                                        | 375.3<br>-35.6<br>379.2<br>-37.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>48A<br>48B<br>4A                                                                                                                                                                                                                                                                                                                                                                           | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168                                                                                                                                                                                                                                                                                                                                                              | 375.3<br>-35.6<br>379.2<br>-37.9<br>8 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43D<br>43C<br>48A<br>48B<br>4A<br>4B                                                                                                                                                                                                                                                                                                                                                              | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756                                                                                                                                                                                                                                                                                                                                                    | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A                                                                                                                                                                                                                                                                                                                                                       | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782                                                                                                                                                                                                                                                                                                                                         | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B                                                                                                                                                                                                                                                                                                                                                | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162                                                                                                                                                                                                                                                                                                                            | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C                                                                                                                                                                                                                                                                                                                                         | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626                                                                                                                                                                                                                                                                                                                 | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A                                                                                                                                                                                                                                                                                                                                  | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>410,091                                                                                                                                                                                                                                                                                                      | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55P                                                                                                                                                                                                                                                                                                                           | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>500,006                                                                                                                                                                                                                                                                                           | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55B<br>55C                                                                                                                                                                                                                                                                                                                    | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>864,882                                                                                                                                                                                                                                                                                | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55B<br>55C<br>58A                                                                                                                                                                                                                                                                                                             | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,198,708                                                                                                                                                                                                                                                                   | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55B<br>55C<br>58A<br>58P                                                                                                                                                                                                                                                                                                      | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,792,898                                                                                                                                                                                                                                                      | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>663.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55B<br>55C<br>58A<br>58B<br>58C                                                                                                                                                                                                                                                                                               | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888                                                                                                                                                                                                                                                      | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55B<br>55C<br>58A<br>58B<br>58C<br>58D                                                                                                                                                                                                                                                                                        | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>529,242                                                                                                                                                                                                                                | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55B<br>55C<br>58A<br>58B<br>58C<br>58D<br>60A                                                                                                                                                                                                                                                                                 | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,700,552                                                                                                                                                                                                                   | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55C<br>58A<br>55B<br>55C<br>58A<br>58B<br>58C<br>58D<br>60A<br>60B                                                                                                                                                                                                                                                            | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>(66,112)                                                                                                                                                                                                       | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55B<br>55C<br>58A<br>58B<br>58C<br>58D<br>60A<br>60B<br>60B                                                                                                                                                                                                                                                                   | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>4,472,22                                                                                                                                                                                            | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>77.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55C<br>58A<br>55B<br>55C<br>58A<br>58B<br>58C<br>58D<br>60A<br>60B<br>63A<br>63A                                                                                                                                                                                                                                              | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>(647,732                                                                                                                                                                               | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55C<br>58A<br>58B<br>58C<br>58D<br>60A<br>60B<br>63A<br>63B<br>67A                                                                                                                                                                                                                                                            | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>4,457,712                                                                                                                                                                   | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>244.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55B<br>55C<br>58A<br>58B<br>58C<br>58D<br>60A<br>60B<br>63A<br>63B<br>67A<br>67D                                                                                                                                                                                                                                              | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,556                                                                                                                                                          | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>106.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55C<br>58A<br>55B<br>55C<br>58A<br>58D<br>60A<br>60B<br>63A<br>63B<br>67A<br>67B<br>70A                                                                                                                                                                                                                                       | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,202,593<br>4,074                                                                                                                                             | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>186.4<br>211.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55C<br>58A<br>55B<br>55C<br>58A<br>58B<br>58C<br>58D<br>60A<br>60B<br>63A<br>63B<br>67A<br>67B<br>70A<br>70A                                                                                                                                                                                                                  | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,202,593<br>1,974,891<br>4,9574                                                                                                                               | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>186.4<br>311.2<br>-90.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55B<br>55C<br>58A<br>58B<br>58C<br>58D<br>60A<br>60B<br>63A<br>63B<br>67A<br>67B<br>70A<br>70B<br>70C                                                                                                                                                                                                                         | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,202,593<br>1,974,891<br>1,854,571<br>2,025,571                                                                                                               | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>186.4<br>311.2<br>90.9<br>-5.5<br>-39.5<br>-5.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5<br>-39.5  | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55B<br>55C<br>58A<br>58B<br>58C<br>58D<br>60A<br>60B<br>63A<br>63B<br>67A<br>67B<br>70A<br>70B<br>70C<br>70D                                                                                                                                                                                                                  | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,202,593<br>1,974,891<br>1,854,571<br>2,043,147<br>2553                                                                                                       | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>186.4<br>311.2<br>90.9<br>164.1<br>4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| 43C<br>43C<br>48A<br>48B<br>4A<br>4B<br>53A<br>53B<br>53C<br>55A<br>55C<br>58A<br>55B<br>55C<br>58A<br>58D<br>60A<br>60B<br>63A<br>63B<br>67A<br>67B<br>70A<br>70B<br>70C<br>70D                                                                                                                                                                                                                  | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,202,593<br>1,974,891<br>1,854,571<br>2,043,147<br>279,833<br>72,9656                                                                                         | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>186.4<br>311.2<br>90.9<br>164.1<br>11.7<br>26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| <ul> <li>43C</li> <li>43C</li> <li>48A</li> <li>48B</li> <li>4A</li> <li>4B</li> <li>53A</li> <li>53B</li> <li>53C</li> <li>55A</li> <li>55C</li> <li>58A</li> <li>58D</li> <li>60A</li> <li>60B</li> <li>63A</li> <li>63B</li> <li>67A</li> <li>67B</li> <li>70A</li> <li>70B</li> <li>70C</li> <li>70D</li> <li>77A</li> </ul>                                                                  | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,202,593<br>1,974,891<br>1,854,571<br>2,043,147<br>279,833<br>702,904                                                                                         | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>186.4<br>311.2<br>90.9<br>164.1<br>11.7<br>-86.2<br>-75.5<br>-75.5<br>-75.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-8.5<br>-78.1<br>-78.1<br>-78.1<br>-8.5<br>-78.1<br>-78.1<br>-8.5<br>-78.1<br>-78.1<br>-78.1<br>-78.5<br>-78.1<br>-78.5<br>-78.1<br>-78.5<br>-78.1<br>-78.5<br>-78.1<br>-78.5<br>-78.1<br>-78.5<br>-78.1<br>-78.5<br>-78.1<br>-78.5<br>-78.1<br>-78.5<br>-78.1<br>-78.5<br>-78.1<br>-78.5<br>-78.1<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5<br>-78.5 | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| <ul> <li>43C</li> <li>43C</li> <li>48A</li> <li>48B</li> <li>4A</li> <li>4B</li> <li>53A</li> <li>53B</li> <li>53C</li> <li>55A</li> <li>55B</li> <li>55C</li> <li>58A</li> <li>58D</li> <li>60A</li> <li>60B</li> <li>63A</li> <li>63B</li> <li>67A</li> <li>67B</li> <li>70A</li> <li>70B</li> <li>70C</li> <li>70D</li> <li>77A</li> <li>77B</li> </ul>                                        | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,202,593<br>1,974,891<br>1,854,571<br>2,043,147<br>279,833<br>702,904<br>640,671<br>1,2551                                                                    | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>186.4<br>311.2<br>90.9<br>164.1<br>11.7<br>-86.2<br>-27.9<br>-7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| <ul> <li>43C</li> <li>43C</li> <li>48A</li> <li>48B</li> <li>4A</li> <li>4B</li> <li>53A</li> <li>53B</li> <li>53C</li> <li>55A</li> <li>55B</li> <li>55C</li> <li>58A</li> <li>58D</li> <li>60A</li> <li>60B</li> <li>63A</li> <li>63B</li> <li>67A</li> <li>67B</li> <li>70A</li> <li>70B</li> <li>70C</li> <li>70D</li> <li>77A</li> <li>77B</li> <li>77C</li> </ul>                           | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,202,593<br>1,974,891<br>1,854,571<br>2,043,147<br>279,833<br>702,904<br>640,671<br>1,205,012                                                                 | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>186.4<br>311.2<br>90.9<br>164.1<br>11.7<br>-86.2<br>-27.9<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8<br>-52.8 | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| <ul> <li>43C</li> <li>43C</li> <li>48A</li> <li>48B</li> <li>4A</li> <li>4B</li> <li>53A</li> <li>53B</li> <li>53C</li> <li>55A</li> <li>55B</li> <li>55C</li> <li>58A</li> <li>58D</li> <li>60A</li> <li>60B</li> <li>63A</li> <li>63B</li> <li>67A</li> <li>67B</li> <li>70A</li> <li>70B</li> <li>70C</li> <li>70D</li> <li>77A</li> <li>77B</li> <li>77C</li> <li>77D</li> </ul>              | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,202,593<br>1,974,891<br>1,854,571<br>2,043,147<br>279,833<br>702,904<br>640,671<br>1,205,012<br>1,405,153                                                    | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>186.4<br>311.2<br>90.9<br>164.1<br>11.7<br>-86.2<br>-27.9<br>-52.8<br>266.8<br>265.8<br>-55.8<br>-55.8<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.8<br>-26.8<br>-55.9<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.8<br>-55.9<br>-55.8<br>-55.9<br>-55.8<br>-55.9<br>-55.8<br>-55.9<br>-55.8<br>-55.9<br>-55.8<br>-55.9<br>-55.9<br>-55.9<br>-55.8<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9<br>-55.9 | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| <ul> <li>43C</li> <li>48A</li> <li>48B</li> <li>4A</li> <li>4B</li> <li>53A</li> <li>53B</li> <li>53C</li> <li>55A</li> <li>55B</li> <li>55C</li> <li>58A</li> <li>58D</li> <li>60A</li> <li>60B</li> <li>63A</li> <li>63B</li> <li>67A</li> <li>67B</li> <li>70A</li> <li>70B</li> <li>70C</li> <li>70D</li> <li>77A</li> <li>77B</li> <li>77C</li> <li>77D</li> <li>77E</li> <li>72A</li> </ul> | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,202,593<br>1,974,891<br>1,854,571<br>2,043,147<br>279,833<br>702,904<br>640,671<br>1,205,012<br>1,405,153<br>1,664,797<br>1205,012<br>1,405,153<br>1,664,797 | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>186.4<br>311.2<br>90.9<br>164.1<br>11.7<br>-86.2<br>-27.9<br>-52.8<br>266.8<br>91.9<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |
| <ul> <li>43C</li> <li>48A</li> <li>48B</li> <li>4A</li> <li>4B</li> <li>53A</li> <li>53B</li> <li>53C</li> <li>55A</li> <li>55B</li> <li>55C</li> <li>58A</li> <li>58D</li> <li>60A</li> <li>60B</li> <li>63A</li> <li>63B</li> <li>67A</li> <li>67B</li> <li>70A</li> <li>70B</li> <li>70C</li> <li>70D</li> <li>77A</li> <li>77B</li> <li>77C</li> <li>77D</li> <li>77E</li> <li>78A</li> </ul> | 2,443,145<br>233,023<br>1,536,456<br>317,086<br>58,168<br>85,756<br>958,782<br>1,768,162<br>422,626<br>419,991<br>590,906<br>863,882<br>6,188,798<br>3,783,888<br>199,531<br>528,343<br>1,792,553<br>668,113<br>1,647,732<br>658,307<br>1,454,712<br>2,202,593<br>1,974,891<br>1,854,571<br>2,043,147<br>279,833<br>702,904<br>640,671<br>1,205,012<br>1,405,153<br>1,664,797<br>639,230                            | 375.3<br>-35.6<br>379.2<br>-37.9<br>-8.3<br>-6.2<br>103.0<br>-4.4<br>69.4<br>0.5<br>-39.5<br>28.7<br>968.9<br>632.0<br>30.8<br>44.2<br>10.6<br>106.7<br>-78.1<br>-8.5<br>344.7<br>186.4<br>311.2<br>90.9<br>164.1<br>11.7<br>-86.2<br>-27.9<br>-52.8<br>266.8<br>91.9<br>40.8<br>10.8<br>10.8<br>10.8<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10. | Note: dSOC is dissolve<br><sup>1</sup> MLRA = Major Land<br><sup>2</sup> Gg CO <sub>2</sub> eq. = Gigagr. | d soil organic carbon.<br>Resource Area<br>ams carbon dioxide equivalent |

| MLRA <sup>1</sup> | Area      | Direct Soil N <sub>2</sub> O Indirect N <sub>2</sub> O from NO <sub>3</sub> Leached/Run |                 | Indirect N <sub>2</sub> O from<br>NH <sub>3</sub> /NO <sub>x</sub><br>Volitilization |
|-------------------|-----------|-----------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------|
|                   | ha        |                                                                                         | $Gg CO_2 eq.^2$ |                                                                                      |
| 1                 | 54,597    | 81.5                                                                                    | 11.3            | 2.3                                                                                  |
| 2                 | 243,632   | 466.8                                                                                   | 49.1            | 14.0                                                                                 |
| 3                 | 17,773    | 68.2                                                                                    | 3.0             | 1.1                                                                                  |
| 5                 | 263,473   | 674.3                                                                                   | 44.9            | 16.3                                                                                 |
| 6                 | 179,315   | 265.0                                                                                   | 1.6             | 2.8                                                                                  |
| 7                 | 409,089   | 105.7                                                                                   | 0.0             | 4.1                                                                                  |
| 8                 | 2,379,429 | 1030.9                                                                                  | 2.5             | 27.1                                                                                 |
| 9                 | 796,574   | 567.3                                                                                   | 3.3             | 11.6                                                                                 |
| 10                | 2,071,584 | 978.2                                                                                   | 2.8             | 27.6                                                                                 |
| 11                | 722,976   | 242.5                                                                                   | 0.0             | 8.3                                                                                  |
| 12                | 145,949   | 84.6                                                                                    | 0.1             | 1.8                                                                                  |
| 13                | 625,994   | 287.2                                                                                   | 0.4             | 7.4                                                                                  |
| 14                | 140,555   | 15.1                                                                                    | 2.5             | 1.7                                                                                  |
| 15                | 2,036,110 | 133.0                                                                                   | 12.2            | 18.7                                                                                 |
| 17                | 1,025,755 | 69.8                                                                                    | 3.5             | 9.7                                                                                  |
| 18                | 850,862   | 96.5                                                                                    | 7.5             | 8.7                                                                                  |
| 19                | 167,401   | 7.4                                                                                     | 0.4             | 1.4                                                                                  |
| 20                | 710,349   | 28.5                                                                                    | 0.1             | 5.1                                                                                  |
| 21                | 578,811   | 891.9                                                                                   | 7.2             | 12.2                                                                                 |
| 23                | 987,306   | 391.0                                                                                   | 0.0             | 12.2                                                                                 |
| 24                | 531,483   | 167.0                                                                                   | 0.0             | 5.3                                                                                  |
| 25                | 1,567,731 | 563.7                                                                                   | 0.0             | 20.0                                                                                 |
| 26                | 310,276   | 170.3                                                                                   | 0.3             | 3.3                                                                                  |
| 27                | 799,461   | 88.6                                                                                    | 0.0             | 7.2                                                                                  |
| 29                | 333,839   | 33.4                                                                                    | 0.1             | 2.1                                                                                  |
| 30                | 1,193,928 | 44.7                                                                                    | 0.0             | 7.9                                                                                  |
| 31                | 146,278   | 4.9                                                                                     | 0.0             | 1.0                                                                                  |
| 32                | 807,861   | 193.7                                                                                   | 0.0             | 12.1                                                                                 |
| 35                | 8,939,750 | 986.7                                                                                   | 0.0             | 102.5                                                                                |
| 36                | 1,339,729 | 406.0                                                                                   | 0.2             | 19.8                                                                                 |
| 38                | 1,678,101 | 90.4                                                                                    | 0.0             | 12.4                                                                                 |
| 39                | 300,000   | 30.6                                                                                    | 0.0             | 4.1                                                                                  |
| 40                | 2,644,850 | 76.8                                                                                    | 0.0             | 14.4                                                                                 |
| 41                | 2,032,033 | 64.4                                                                                    | 0.0             | 11.0                                                                                 |
| 42                | 7,117,114 | 1321.3                                                                                  | 0.0             | 145.8                                                                                |
| 44                | 1,386,170 | 1239.4                                                                                  | 6.8             | 22.1                                                                                 |
| 46                | 2,334,195 | 1115.9                                                                                  | 2.2             | 38.1                                                                                 |
| 47                | 1,299,930 | 634.0                                                                                   | 1.7             | 17.7                                                                                 |
| 49                | 1,451,736 | 432.1                                                                                   | 0.0             | 27.6                                                                                 |
| 51                | 576,854   | 197.2                                                                                   | 0.1             | 8.9                                                                                  |
| 52                | 2,037,706 | 510.9                                                                                   | 0.0             | 29.4                                                                                 |
| 54                | 4,052,914 | 884.0                                                                                   | 0.0             | 64.7                                                                                 |
| 56                | 272,722   | 112.3                                                                                   | 0.4             | 7.9                                                                                  |
| 57                | 217,910   | 142.1                                                                                   | 4.2             | 8.1                                                                                  |
| 61                | 237,646   | 56.3                                                                                    | 0.2             | 3.9                                                                                  |

# Appendix Table A-27 MLRA-Level Estimates of Mean Annual Direct and Indirect N<sub>2</sub>O Emissions from Non-Federal Grasslands, 2003-2007



# Continued - Appendix Table A-27 MLRA-Level Estimates of Mean Annual Direct and Indirect N<sub>2</sub>O Emissions from Non-Federal Grasslands, 2003-2007

| MLRA <sup>1</sup> | Area      | Direct Soil N <sub>2</sub> O | Indirect N <sub>2</sub> O from<br>NO <sub>3</sub> Leached/Runoff | Indirect N <sub>2</sub> O from<br>NH <sub>3</sub> /NO <sub>x</sub><br>Volitilization |
|-------------------|-----------|------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                   | ha        |                              | $Gg CO_2 eq.^2$                                                  |                                                                                      |
| 62                | 133,877   | 31.4                         | 0.3                                                              | 2.3                                                                                  |
| 64                | 1,962,501 | 386.5                        | 0.0                                                              | 38.3                                                                                 |
| 65                | 4,703,281 | 1194.1                       | 0.6                                                              | 117.9                                                                                |
| 66                | 970,886   | 229.9                        | 0.0                                                              | 22.3                                                                                 |
| 69                | 2,245,770 | 674.5                        | 0.0                                                              | 43.1                                                                                 |
| 71                | 1,012,309 | 343.5                        | 0.5                                                              | 22.0                                                                                 |
| 72                | 2,419,203 | 774.3                        | 0.0                                                              | 58.8                                                                                 |
| 73                | 2,267,127 | 1022.8                       | 0.2                                                              | 56.9                                                                                 |
| 74                | 607,367   | 277.6                        | 5.1                                                              | 16.0                                                                                 |
| 75                | 323,527   | 134.5                        | 1.1                                                              | 7.9                                                                                  |
| 76                | 1,510,595 | 871.1                        | 18.8                                                             | 39.1                                                                                 |
| 79                | 411,928   | 109.0                        | 0.9                                                              | 11.6                                                                                 |
| 85                | 1,369,323 | 1174.6                       | 24.5                                                             | 63.1                                                                                 |
| 88                | 63,503    | 91.5                         | 1.5                                                              | 3.6                                                                                  |
| 89                | 31,158    | 53.2                         | 2.9                                                              | 1.6                                                                                  |
| 92                | 36,473    | 94.5                         | 1.1                                                              | 2.1                                                                                  |
| 96                | 51,706    | 68.9                         | 3.3                                                              | 1.9                                                                                  |
| 97                | 47,882    | 80.2                         | 3.3                                                              | 2.2                                                                                  |
| 98                | 301,989   | 353.5                        | 17.1                                                             | 13.4                                                                                 |
| 99                | 63,472    | 50.3                         | 2.2                                                              | 2.2                                                                                  |
| 101               | 154,267   | 349.7                        | 9.0                                                              | 6.5                                                                                  |
| 103               | 328,349   | 283.5                        | 9.5                                                              | 10.6                                                                                 |
| 104               | 140,345   | 208.8                        | 6.5                                                              | 5.7                                                                                  |
| 105               | 626,326   | 789.1                        | 22.3                                                             | 22.6                                                                                 |
| 106               | 572,613   | 298.1                        | 3.0                                                              | 13.9                                                                                 |
| 109               | 926,578   | 949.5                        | 52.2                                                             | 32.1                                                                                 |
| 110               | 66,940    | 92.3                         | 3.2                                                              | 2.4                                                                                  |
| 112               | 2,230,417 | 1228.1                       | 37.7                                                             | 56.8                                                                                 |
| 113               | 277,306   | 248.7                        | 9.6                                                              | 9.3                                                                                  |
| 117               | 240,831   | 115.6                        | 14.6                                                             | 8.3                                                                                  |
| 119               | 341,603   | 151.3                        | 20.9                                                             | 10.6                                                                                 |
| 121               | 632,837   | 852.0                        | 42.0                                                             | 22.0                                                                                 |
| 122               | 940,743   | 658.1                        | 63.5                                                             | 39.1                                                                                 |
| 123               | 339,212   | 218.9                        | 22.2                                                             | 12.1                                                                                 |
| 124               | 250,471   | 342.1                        | 16.5                                                             | 9.5                                                                                  |
| 125               | 201,304   | 164.7                        | 19.4                                                             | 7.8                                                                                  |
| 126               | 385,164   | 483.7                        | 22.3                                                             | 13.9                                                                                 |
| 120               | 189,799   | 287.8                        | 12.5                                                             | 8.3                                                                                  |
| 128               | 861,793   | 603.4                        | 55.4                                                             | 36.3                                                                                 |
| 120               | 204,725   | 66.3                         | 13.0                                                             | 9.6                                                                                  |
| 134               | 737.073   | 344.1                        | 26.8                                                             | 32.4                                                                                 |
| 136               | 1.117.885 | 827.3                        | 81.1                                                             | 52. <del>4</del><br>77 7                                                             |
| 137               | 46.206    | 27.5                         | 5.2                                                              | 3.6                                                                                  |
| 138               | 72.997    | 22.9                         | 5.0                                                              | 5.0                                                                                  |
| 130               | 144.352   | 20.7<br>241 Q                | 5.2                                                              | 5.2                                                                                  |
| 140               | 371.164   | 2+1.0<br>700 g               | 23.1                                                             | 18.6                                                                                 |
| 141               | 8 165     | 10.4                         | 0.4                                                              | 0.4                                                                                  |
| 1 7 1             | 0,100     | 19.0                         | 0.4                                                              | 0.4                                                                                  |



## Continued - Appendix Table A-27 MLRA-Level Estimates of Mean Annual Direct and Indirect N<sub>2</sub>O Emissions from Non-Federal Grasslands, 2003-2007

| MLRA <sup>1</sup> | Area      | Direct Soil N <sub>2</sub> O | Indirect N <sub>2</sub> O from<br>NO <sub>3</sub> Leached/Runoff | Indirect N <sub>2</sub> O from<br>NH <sub>3</sub> /NO <sub>x</sub><br>Volitilization |
|-------------------|-----------|------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                   | ha        |                              | $Gg CO_2 eg.^2$                                                  |                                                                                      |
| 142               | 126,775   | 252.3                        | 5.6                                                              | 5.0                                                                                  |
| 143               | 39,121    | 73.9                         | 2.6                                                              | 1.5                                                                                  |
| 145               | 10,074    | 17.9                         | 0.6                                                              | 0.4                                                                                  |
| 147               | 404,552   | 472.2                        | 28.4                                                             | 22.3                                                                                 |
| 148               | 338,595   | 308.7                        | 19.2                                                             | 16.0                                                                                 |
| 151               | 78,578    | 44.0                         | 0.8                                                              | 1.8                                                                                  |
| 154               | 260,436   | 91.1                         | 25.0                                                             | 14.2                                                                                 |
| 155               | 1,209,929 | 335.6                        | 76.4                                                             | 45.4                                                                                 |
| 102A              | 802,261   | 311.0                        | 3.0                                                              | 18.5                                                                                 |
| 102B              | 56,522    | 15.0                         | 0.0                                                              | 1.1                                                                                  |
| 102C              | 451,346   | 153.5                        | 1.4                                                              | 9.7                                                                                  |
| 107A              | 62,367    | 77.9                         | 1.1                                                              | 2.7                                                                                  |
| 107B              | 341,131   | 287.0                        | 3.5                                                              | 11.8                                                                                 |
| 108A              | 42,462    | 55.1                         | 1.3                                                              | 1.5                                                                                  |
| 108B              | 106,015   | 127.4                        | 2.7                                                              | 3.7                                                                                  |
| 108C              | 143,023   | 245.9                        | 9.8                                                              | 6.5                                                                                  |
| 108D              | 230,418   | 285.6                        | 12.0                                                             | 9.4                                                                                  |
| 111A              | 144,848   | 147.4                        | 8.2                                                              | 4.7                                                                                  |
| 111B              | 119,404   | 89.6                         | 4.0                                                              | 3.9                                                                                  |
| 111C              | 41,763    | 33.1                         | 2.5                                                              | 1.6                                                                                  |
| 1110<br>111D      | 59,226    | 73.5                         | 3.8                                                              | 2.0                                                                                  |
| 111E              | 27,900    | 34.2                         | 1.5                                                              | 1.1                                                                                  |
| 114A              | 104,534   | 113.7                        | 5.0                                                              | 3.8                                                                                  |
| 114B              | 121,249   | 146.4                        | 6.6                                                              | 4.4                                                                                  |
| 115A              | 53,780    | 56.5                         | 2.5                                                              | 21                                                                                   |
| 115B              | 305,634   | 282.0                        | 8.7                                                              | 8.8                                                                                  |
| 1150              | 345,948   | 353.1                        | 82                                                               | 11.8                                                                                 |
| 1168<br>116A      | 2,126,540 | 1554.0                       | 113.0                                                            | 74.3                                                                                 |
| 116B              | 507,825   | 367.5                        | 20.0                                                             | 18.9                                                                                 |
| 116C              | 66,379    | 71.4                         | 3.0                                                              | 1.9                                                                                  |
| 1180<br>118A      | 616,870   | 248.2                        | 33.2                                                             | 17.6                                                                                 |
| 118H              | 291,406   | 116.3                        | 8.5                                                              | 7.5                                                                                  |
| 120A              | 265,303   | 226.2                        | 13.5                                                             | 10.6                                                                                 |
| 120B              | 63,592    | 76.7                         | 4.0                                                              | 2.5                                                                                  |
| 120D              | 11,235    | 14.5                         | 0.8                                                              | 0.4                                                                                  |
| 130A              | 12.035    | 12.2                         | 0.8                                                              | 0.5                                                                                  |
| 130R              | 203.692   | 161.1                        | 13.1                                                             | 8.6                                                                                  |
| 130D              | 241.071   | 149.7                        | 61                                                               | 9.0                                                                                  |
| 131R              | 42.168    | 30.8                         | 13                                                               | 1.3                                                                                  |
| 1310              | 140.088   | 101.5                        | 3.3                                                              | 5.5                                                                                  |
| 131D              | 29.985    | 101.5                        | 1.5                                                              | 1.0                                                                                  |
| 1334              | 1 441 544 | 567 7                        | 1.5                                                              | 1.0<br>81 0                                                                          |
| 133R              | 1,187 959 | 412 C                        | 50 1                                                             | A1 A                                                                                 |
| 1354              | 381 841   | 413.2                        | 10 7                                                             | 41.4<br>17.6                                                                         |
| 135R              | 309 250   | 104.0                        | 10./                                                             | 10.4                                                                                 |
| 1// 4             | 119.969   | 194.0                        | 0 0                                                              | 10.0<br>E 0                                                                          |
| 144R              | 79 998    | 202.9                        | 0.0<br>4 7                                                       | 3.0                                                                                  |
| 1 1 1 1 1         | , 0       | 140.5                        | T./                                                              | 5.0                                                                                  |



## Continued - Appendix Table A-27 MLRA-Level Estimates of Mean Annual Direct and Indirect N<sub>2</sub>O Emissions from Non-Federal Grasslands, 2003-2007

| MLRA <sup>1</sup> | Area      | Direct Soil N2O | Indirect N <sub>2</sub> O from<br>NO <sub>3</sub> Leached/Runoff | Indirect N <sub>2</sub> O from<br>NH <sub>3</sub> /NO <sub>x</sub><br>Volitilization |
|-------------------|-----------|-----------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                   | ha        |                 | $Gg CO_2 eq.^2$                                                  |                                                                                      |
| 149A              | 31,531    | 20.7            | 2.6                                                              | 1.5                                                                                  |
| 149B              | 3,112     | 1.7             | 0.2                                                              | 0.1                                                                                  |
| 150A              | 1,165,952 | 380.2           | 16.6                                                             | 35.9                                                                                 |
| 150B              | 249,079   | 53.9            | 2.4                                                              | 5.3                                                                                  |
| 152A              | 38,047    | 11.3            | 1.9                                                              | 2.0                                                                                  |
| 152B              | 79,521    | 23.1            | 2.9                                                              | 3.2                                                                                  |
| 153A              | 86,206    | 30.3            | 6.8                                                              | 5.8                                                                                  |
| 153B              | 9,909     | 3.7             | 0.4                                                              | 0.6                                                                                  |
| 153C              | 15,220    | 10.3            | 1.3                                                              | 1.0                                                                                  |
| 153D              | 14,083    | 9.1             | 1.2                                                              | 0.9                                                                                  |
| 156A              | 67,768    | 12.3            | 2.3                                                              | 1.8                                                                                  |
| 156B              | 104,655   | 27.2            | 5.4                                                              | 3.4                                                                                  |
| 22A               | 82,010    | 71.0            | 0.9                                                              | 1.0                                                                                  |
| 28A               | 1,330,232 | 476.9           | 0.1                                                              | 17.6                                                                                 |
| 28B               | 305,998   | 77.7            | 0.0                                                              | 3.2                                                                                  |
| 34A               | 3,017,610 | 963.9           | 0.4                                                              | 39.0                                                                                 |
| 34B               | 731,884   | 217.6           | 0.3                                                              | 9.4                                                                                  |
| 43A               | 364,330   | 516.3           | 22                                                               | 6.7                                                                                  |
| 43B               | 2,443,145 | 1403.7          | 5.7                                                              | 36.3                                                                                 |
| 430               | 233.023   | 203.7           | 1.4                                                              | 3 3                                                                                  |
| 48A               | 1,536,456 | 866.2           | 3.4                                                              | 22.1                                                                                 |
| 48B               | 317.086   | 168.4           | 0.7                                                              | 4.1                                                                                  |
| 4 A               | 58,168    | 51.4            | 11.2                                                             | 1.1                                                                                  |
| 4B                | 85.756    | 16.0            | 5.1                                                              | 1.0                                                                                  |
| 53 A              | 958.782   | 10.0            | 0.0                                                              | 1.3                                                                                  |
| 53B               | 1 768 162 | 349.2           | 0.0                                                              | 27.5                                                                                 |
| 53C               | 422.626   | 102.9           | 0.0                                                              | 7.6                                                                                  |
| 55 A              | 419 991   | 84.5            | 0.0                                                              | 6.9                                                                                  |
| 55B               | 590,906   | 148.2           | 0.0                                                              | 0.7                                                                                  |
| 55C               | 863 882   | 226.8           | 0.0                                                              | 17.0                                                                                 |
| 58 4              | 6 188 798 | 2457.0          | 0.0                                                              | 107.6                                                                                |
| 50A               | 3 783 888 | 043.3           | 0.1                                                              | 57.8                                                                                 |
| 500               | 199 531   | 943.3           | 0.4                                                              | 2.0                                                                                  |
| 500               | 528 343   | 41.0            | 0.0                                                              | 5.0                                                                                  |
| 58D               | 1 792 553 | 521.0           | 0.0                                                              | 22.6                                                                                 |
| 60A<br>60P        | 668 113   | 321.0           | 0.0                                                              | 22.0                                                                                 |
| 63 A              | 1 647 732 | 556.5           | 0.0                                                              | 10.0                                                                                 |
| 63P               | 658 307   | 201.0           | 0.0                                                              | 0.4                                                                                  |
| 63B               | 1 454 712 | 291.9           | 0.0                                                              | 9.4<br>21.9                                                                          |
| 07A<br>67P        | 2 202 593 | 525.9           | 0.0                                                              | 31.0                                                                                 |
| 0/D<br>70A        | 1 974 891 | 549.2           | 0.0                                                              | 48.0                                                                                 |
| 70A<br>70D        | 1,977,091 | 432.4           | 0.0                                                              | 43./                                                                                 |
| 70B               | 2 0/2 1/7 | 315./           | 0.0                                                              | 39.5                                                                                 |
| 70C               | 2,043,147 | 314.1           | 0.0                                                              | 41.0                                                                                 |
| /0D               | 702.004   | 29.7            | 0.0                                                              | 4.3                                                                                  |
| //A               | (102,904  | 228.2           | 0.0                                                              | 18.1                                                                                 |
| //B               | 040,071   | 126.6           | 0.0                                                              | 14.0                                                                                 |
| 77/C              | 1,205,012 | 352.9           | 0.0                                                              | 27.2                                                                                 |



| MLRA <sup>1</sup> | Area        | Direct Soil N <sub>2</sub> O        | Indirect N <sub>2</sub> O from NO <sub>3</sub> Leached/Runoff | Indirect N2O from<br>NH3/NOx<br>Volitilization |  |  |
|-------------------|-------------|-------------------------------------|---------------------------------------------------------------|------------------------------------------------|--|--|
| ha                |             | Gg CO <sub>2</sub> eq. <sup>2</sup> |                                                               |                                                |  |  |
| 77D               | 1,405,153   | 179.5                               | 0.0                                                           | 26.7                                           |  |  |
| 77E               | 1,664,797   | 511.3                               | 0.0                                                           | 44.9                                           |  |  |
| 78A               | 639,230     | 211.2                               | 0.0                                                           | 15.3                                           |  |  |
| 78B               | 2,491,438   | 766.2                               | 0.0                                                           | 58.9                                           |  |  |
| 78C               | 2,445,635   | 835.2                               | 0.0                                                           | 60.2                                           |  |  |
| 80A               | 1,963,077   | 741.6                               | 17.3                                                          | 53.0                                           |  |  |
| 80B               | 968,445     | 346.7                               | 0.0                                                           | 28.3                                           |  |  |
| 81A               | 2,866,367   | 525.9                               | 0.0                                                           | 68.4                                           |  |  |
| 81B               | 1,940,970   | 444.0                               | 0.0                                                           | 50.3                                           |  |  |
| 81C               | 1,236,724   | 320.4                               | 0.0                                                           | 32.5                                           |  |  |
| 81D               | 516,702     | 53.5                                | 0.0                                                           | 11.1                                           |  |  |
| 82A               | 401,734     | 54.2                                | 0.0                                                           | 10.1                                           |  |  |
| 82B               | 57,923      | 25.2                                | 0.0                                                           | 1.7                                            |  |  |
| 83A               | 1,706,897   | 359.0                               | 0.0                                                           | 38.9                                           |  |  |
| 83B               | 1,463,751   | 504.3                               | 0.0                                                           | 31.7                                           |  |  |
| 83C               | 755,825     | 122.0                               | 0.0                                                           | 17.5                                           |  |  |
| 83D               | 129,375     | 18.5                                | 0.0                                                           | 3.0                                            |  |  |
| 83E               | 659,343     | 76.4                                | 0.1                                                           | 15.1                                           |  |  |
| 84A               | 875,391     | 313.1                               | 26.9                                                          | 24.4                                           |  |  |
| 84B               | 745,691     | 585.5                               | 14.5                                                          | 35.5                                           |  |  |
| 84C               | 113,856     | 78.3                                | 3.8                                                           | 5.7                                            |  |  |
| 86A               | 1,453,945   | 1742.6                              | 34.9                                                          | 53.4                                           |  |  |
| 86B               | 351,296     | 220.6                               | 7.7                                                           | 10.7                                           |  |  |
| 87A               | 1,544,144   | 444.7                               | 17.6                                                          | 42.9                                           |  |  |
| 87B               | 410,138     | 182.0                               | 17.6                                                          | 13.2                                           |  |  |
| 90A               | 265,868     | 440.0                               | 13.3                                                          | 12.8                                           |  |  |
| 90B               | 248,178     | 422.6                               | 11.8                                                          | 11.9                                           |  |  |
| 91A               | 161,283     | 135.5                               | 6.8                                                           | 7.4                                            |  |  |
| 91B               | 52,108      | 87.0                                | 6.5                                                           | 2.6                                            |  |  |
| 94A               | 130,138     | 223.3                               | 8.9                                                           | 5.6                                            |  |  |
| 94B               | 61,815      | 152.5                               | 4.0                                                           | 3.0                                            |  |  |
| 94C               | 25,098      | 56.6                                | 1.7                                                           | 1.1                                            |  |  |
| 95A               | 91,989      | 174.6                               | 8.2                                                           | 5.2                                            |  |  |
| 95B               | 223,059     | 379.0                               | 15.3                                                          | 11.3                                           |  |  |
| Total             | 180,415,846 | 70678.7                             | 1828.9                                                        | 3944.0                                         |  |  |

Continued - Appendix Table A-27 MLRA-Level Estimates of Mean Annual Direct and Indirect N<sub>2</sub>O Emissions from Non-Federal Grasslands, 2003-2007

Note: N<sub>2</sub>O is nitrous oxide. NO<sub>3</sub> is nitric oxide.

<sup>1</sup> MLRA = Major Land Resource Area

<sup>2</sup>Gg CO<sub>2</sub> eq. = Gigagrams carbon dioxide equivalents







Chapter 3 Download data: http://dx.doi.org/10.15482/USDA.ADC/1264151

# **Cropland Agriculture**

### Summary of U.S. Greenhouse Gas 3.1 Emissions From Cropland Agriculture

Based on IPCC Tier 1 (default emission factors) and Tier 3 (DayCent model simulations) methods, cropland agriculture resulted in approximately 209 MMT CO<sub>2</sub> eq. total emissions of greenhouse gases (GHG) in 2013 (Table 3-1). Cropland agriculture is responsible for almost half (46 percent) of all emissions from the agricultural sector (EPA 2015). Nitrous oxide  $(N_2O)$ , carbon dioxide  $(CO_2)$ , and methane  $(CH_{\lambda})$  emissions from cropped soils totaled 168, 33, and 9 MMT CO, eq. in 2013. However, that amount was offset by a storage, or carbon sequestration, of 34 MMT CO<sub>2</sub> eq. in cropped mineral soils in 2013. When carbon sequestration is taken into account, net emissions of GHG from cropland agriculture amount to approximately 175 MMT CO<sub>2</sub> eq. The 95-percent confidence interval for net emissions in 2013 is estimated to lie between 129 and 249 MMT CO<sub>2</sub> eq. (Table 3-1).

Annual fluctuations in CO<sub>2</sub> sequestration are primarily a result of changes in land use and variability in weather patterns. In 2013, net emissions from cropland agriculture were about 50 percent higher than the baseline year (1990), mainly from an increase in N<sub>2</sub>O emissions associated with increased cropping and a simultaneous reduction in the CO<sub>2</sub> sink in cropland mineral soils. Greenhouse gas emissions from agricultural soils fluctuated between 1990 and 2013, with CH<sub>4</sub> and N<sub>2</sub>O reaching their highest levels in 2010 and 2012 respectively (Table 3-2). Net CO<sub>2</sub> flux showed substantial inter-annual variability, mainly due to fluctuations in the size of the mineral soil CO<sub>2</sub> sink.

Greenhouse gas emissions from agricultural soils, primarily N<sub>2</sub>O, were responsible for the majority of total emissions (80 percent), while CH<sub>4</sub> and N<sub>2</sub>O from residue burning and rice cultivation caused about 4 percent of emissions in 2013 (Tables 3-1, 3-2). Soil CO<sub>2</sub> emissions from cultivation of organic soils (13 percent) and from liming (3 percent) are the remaining sources. Nitrous oxide emissions from soils are the largest source in the United States because N<sub>2</sub>O is a potent greenhouse gas (see Chapter 1 Box 1-1). Large amounts of nitrogen are added to crops from fertilizer amendments and legume cropping, which both stimulate N<sub>2</sub>O production. Emissions from residue burning are minor because only ~3 percent of crop residue is assumed to be burned in the United States (EPA 2015). Cropped mineral soils in the United States are a net CO<sub>2</sub> sink for various reasons, including improved crop varieties and better management leading to increased carbon inputs from residues and reduced tillage intensity that has become more popular in recent years, reducing carbon losses from decomposition. In addition, lands used for perennial hay cropping, as well as idle cropland enrolled in the Conservation Reserve Program (CRP), continue to store carbon. However, the magnitude of this sequestration in recent years is not as great as it was during the 1990s, partially due to land conversion from CRP back to cropping and lands that have been in CRP for about 10 years or more, storing less carbon than they did initially or even becoming carbon neutral.

Nitrous oxide emissions are largest in areas where a large portion of land is used for intensive agriculture (Map 3-1a, Figures 3-1a, 3-1b). For example, more than 50 percent of the land area in some Major Land Resource Areas (MLRAs) that lie within the Corn Belt is intensively cropped. Row crops such as corn, soybeans, and sorghum make up close to 40 percent of total cropland and have the highest N<sub>2</sub>O emissions, followed by small grain crops such as wheat, barley and rye, other cropland, and hay

| Table 3-1 Estimates and | Uncertainties f | or Cropland | Greenhouse Gas |
|-------------------------|-----------------|-------------|----------------|
| Emissions, 2013         |                 | -           |                |
|                         |                 |             |                |

|                             | GHG Emissions           | Lower Bound | Upper Bound |  |  |  |
|-----------------------------|-------------------------|-------------|-------------|--|--|--|
| Source                      | MMT CO <sub>2</sub> eq. |             |             |  |  |  |
| N <sub>2</sub> O            | 168                     | 142         | 230         |  |  |  |
| Soils Direct                | 136                     | 189         | 282         |  |  |  |
| Soils Indirect <sup>1</sup> | 32                      | 21          | 102         |  |  |  |
| Residue Burning             | 0.1                     | 0.1         | 0.1         |  |  |  |
| $CH_4$                      | 9                       | 4           | 16          |  |  |  |
| Residue Burning             | 0.3                     | 0.2         | 0.4         |  |  |  |
| Rice Cultivation            | 8                       | 4           | 14          |  |  |  |
| $CO_2^2$                    | (1)                     | (39)        | 38          |  |  |  |
| Mineral Soils               | (34)                    | (71)        | 2           |  |  |  |
| Organic Soils               | 27                      | 18          | 39          |  |  |  |
| Liming of Soils             | 6                       | 0           | 8           |  |  |  |
| Total Emissions             | 209                     | 165         | 294         |  |  |  |
| Net Emissions3              | 175                     | 129         | 249         |  |  |  |

Note: Parenthesse indicate a net sequestration. MMT CO<sub>2</sub> eq. is million metric tons carbon dioxide equivalent. CH<sub>4</sub> is methane; N<sub>2</sub>O is nitrous oxide; CO<sub>2</sub> is carbon dioxide.

<sup>2</sup> Does not include CO<sub>2</sub> emissions from urea fertilization

3 Includes sources and sinks.



Map 3-1a Total Nitrous Oxide (Direct and Indirect) for Major Land Resource Areas, Tier 3 Crops, Annual Means 2003–2007 (Gg CO<sub>2</sub> eq. is gigagrams carbon dioxide equivalent.)

cropping (Table 3-3). Unit area emissions were highest in the Northeast (Map 3-1b) largely because of N<sub>2</sub>O pulses during spring when snow cover and soil surface layers melt while subsoil remains frozen, thus causing water ponding and associated emissions. Changes in emissions through time are driven largely by land conversion (e.g., land previously left fallow or used for small grain cropping that has been converted to row cropping). Similar to Figure 3-1a, Map 3-1 and Table 3-3 only include areas and emissions from Tier 3 cropped land, which covers ~87 percent of total cropped land. Appendix Table B-1 provides recent MLRA-level land area estimates for the same major crop rotations presented in Figure 3-1a.

Cropland agriculture results in GHG emissions from multiple sources, with the magnitude of emissions determined, in part, by land management practices. Application of synthetic and organic fertilizers, cultivation of N-fixing crops and rice, cultivation and management of soils, and field burning of crop

Table 3-2 Summary of Greenhouse Gas Emissions from Cropland Agriculture, 1990, 1995, 2000, 2005-2013

| -                           | 1990   | 1995           | 2000   | 2005   | 2006   | 2007   | 2008   | 2009   | 2010   | 2011   | 2012   | 2013   |
|-----------------------------|--------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Source                      |        | $MMT CO_2 eq.$ |        |        |        |        |        |        |        |        |        |        |
| N <sub>2</sub> O            | 143.6  | 158.3          | 141.9  | 158.7  | 156.9  | 164.6  | 169.8  | 167.9  | 168.2  | 169.9  | 170.6  | 167.9  |
| Soils Direct                | 117.1  | 127.3          | 115.7  | 130.6  | 129.1  | 134.2  | 137.4  | 136.0  | 136.2  | 137.2  | 137.6  | 135.7  |
| Soils Indirect <sup>1</sup> | 26.4   | 30.9           | 26.1   | 28.1   | 27.7   | 30.3   | 32.3   | 31.8   | 31.9   | 32.6   | 32.9   | 32.1   |
| Residue Burning             | 0.1    | 0.1            | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    | 0.1    |
| $CH_4$                      | 9.5    | 10.1           | 9.9    | 9.2    | 8.0    | 8.3    | 9.6    | 9.7    | 11.4   | 8.8    | 9.6    | 8.6    |
| Residue Burning             | 0.3    | 0.3            | 0.3    | 0.2    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    |
| Rice Cultivation            | 9.2    | 9.8            | 9.6    | 8.9    | 7.7    | 8.0    | 9.3    | 9.4    | 11.1   | 8.5    | 9.3    | 8.3    |
| $CO_2^2$                    | (36.0) | (6.9)          | (18.8) | (3.9)  | (7.5)  | (9.4)  | (6.8)  | (7.6)  | (4.9)  | (5.7)  | (3.1)  | (1.4)  |
| Mineral Soils               | (66.7) | (38.6)         | (49.4) | (35.7) | (38.9) | (40.8) | (38.8) | (38.2) | (36.6) | (36.5) | (35.8) | (34.2) |
| Organic Soils               | 26.0   | 27.3           | 26.4   | 27.5   | 27.2   | 26.9   | 26.9   | 26.9   | 26.9   | 26.9   | 26.9   | 26.9   |
| Liming of Soils             | 4.7    | 4.4            | 4.3    | 4.3    | 4.2    | 4.5    | 5.0    | 3.7    | 4.8    | 3.9    | 5.8    | 5.9    |
| Total Emissions             | 183.8  | 200.1          | 182.5  | 199.7  | 196.3  | 204.3  | 211.3  | 208.2  | 211.3  | 209.5  | 212.9  | 209.3  |
| Net Emissions <sup>3</sup>  | 117.0  | 161.5          | 133.1  | 164.0  | 157.3  | 163.5  | 172.5  | 170.0  | 174.7  | 173.0  | 177.1  | 175.1  |

Note: Parentheses indicate a net sequestration. MMT CO2 eq. is million metric tons carbon dioxide equivalent. CH4 is methane;

 $N_2O$  is nitrous oxide;  $CO_2$  is carbon dioxide.

 $^1$  Soils Indirect  $\rm N_2O$  emissions account for both volatilization and leaching/runoff  $^2$  Does not include CO\_2 emissions from urea fertilization.

3 Includes sources and sinks.



Map 3-1b Unit Area Nitrous Oxide (Direct and Indirect) for Major Land Resource Areas, Tier 3 Crops, Annual Means 2003–2007 (Mg  $CO_2$  eq. ha<sup>-1</sup> yr<sup>-1</sup> is megagrams carbon dioxide equivalent per hectare per year.)

residues lead to emissions of  $N_2O$ ,  $CH_4$ , and  $CO_2$ . However, agricultural soils can also mitigate GHG emissions through the biological uptake of organic carbon in soils, resulting in CO<sub>2</sub> removals from the atmosphere. This chapter covers both GHG emissions from cropland agriculture and biological uptake of CO<sub>2</sub> in agricultural soils. National estimates of these sources, published in the U.S. GHG Inventory, are reported in this section and, where appropriate, MLRA and State-level emissions estimates are provided. Sources and sinks of N<sub>2</sub>O, CH<sub>4</sub>, and CO<sub>2</sub> and the mechanisms that control fluxes are discussed in detail. Methodologies used to estimate emissions are summarized and mitigation opportunities are discussed and quantified where possible. The methodologies used here are similar to those reported in the second edition of the USDA GHG report (USDA 2011a), with some improvements in model algorithms and model input data.

In contrast to previous editions of the inventory that reported emissions from individual crops at the State level, emissions are now partitioned by crop rotations and reported at the MLRA level. Partitioning was performed for rotations because emissions are thought to be better correlated to farming systems as opposed to individual crops, because the emissions in a given year reflect management history. For example, wheat might be growing during a particular year, but the emissions for that year are partly (and sometimes largely) due to what happened the previous year(s). Emissions were partitioned into nine major cropping rotations (Figure 3-1a) by generating queries for each MLRA. That is, for each MLRA, the emissions and land area for a particular rotation were extracted from the databases. The queries were performed in a particular order (top to bottom in Figure 3-1a, Table 3-3) and were mutually exclusive. For example, land area used predominately for production of row crops that was also irrigated



would appear in the irrigated category and not be included in the row crops category. If queries were not mutually exclusive, then there would be double accounting because the land areas of some rotations partially overlap.

The data reported represent 5-year means (except from years 1990-1992) to reduce interannual variation due to weather and other factors. Rotations were defined using a general majority rule. For example, if a land area was fallow at least 3 out of 5 years it was classified as fallow, if land was in rice production at least 3 out of 5 years, it was classified as rice, and so on. Based on availability of land use data, we considered four time periods and reported emissions for the median years. These were 1990–1992, 1993–1997, 1998–2002, and 2003–2007. Figure 3-1a does not include years beyond 2007 because that was the most recent year for which land use data were available and subsequent years were assumed to have identical land use. In addition to rotations, areas are also shown for individual crops (Figure 3-1b). In contrast to Figure 3-1a, which includes only Tier 3 cropland areas up to 2007, Figure 3-1b represents total areas up to 2013. Tier 3 cropped lands were simulated using the DayCent model while Tier 1 emission factors were used to estimate emissions for remaining cropped land, see section 3.3 for details.

### Table 3-3 Tier 3 Cropland Area by Management Practice, 2013

|                    | Area       | Total Tier 3 Cropland |
|--------------------|------------|-----------------------|
| Current Management | million ha | %                     |
| Fallow             | 10.3       | 7.2                   |
| Rice               | 1.9        | 1.3                   |
| Irrigated          | 17.4       | 12.1                  |
| Hay                | 16.2       | 11.3                  |
| Small Grain        | 18.5       | 12.9                  |
| Row Crop           | 57.4       | 40.0                  |
| Low Residue        | 4.4        | 3.0                   |
| USDA Conservation  |            |                       |
| Reserve Program    | 12.5       | 8.7                   |
| Other Cropland     | 4.9        | 3.4                   |
### 3.2 Sources and Sinks of Greenhouse Gas Emissions in Cropland Agriculture

#### 3.2.1 Cropped Soils



Agricultural soils act as both a source of GHGs and a mechanism to remove CO<sub>2</sub> from the atmosphere. Nitrous oxide, CH<sub>4</sub>, and CO<sub>2</sub> emissions and sinks are a function of underlying biochemical processes. Nitrous oxide is produced as an intermediate during nitrification and denitrification in soils (Firestone & Davidson 1989). In nitrification, soil microorganisms ("microbes") convert ammonium (NH4) to nitrate (NO<sub>3</sub>) through aerobic oxidation (IPCC 2006). In denitrification, microbes convert nitrate to nitrogen oxides  $(NO_{y})$  and nitrogen gas  $(N_{y})$  by anaerobic reduction. During nitrification and denitrification, N<sub>2</sub>O is created as a byproduct, which can diffuse from the soil and enter the earth's atmosphere (IPCC 2006). Cropland soil amendments that add nitrogen to soils drive the production of N<sub>2</sub>O by providing additional substrate, which enhances nitrification and denitrification. Synthetic fertilizer, livestock manure, sewage sludge, cultivation of N-fixing crops, and incorporation of crop residues all add various forms of N to soils. In addition, cultivation, particularly of soils high in organic matter (i.e., histosols), enhances mineralization of nitrogen-rich organic matter, making more nitrogen available for nitrification and denitrification (EPA 2015). Compared to soil N<sub>2</sub>O emissions, other GHG sources from croplands are relatively small. Methane gas is produced and emitted primarily from rice paddies. This, however, is responsible only for a small portion of total emissions from cropped soils in the United States due to the small land area cropped with paddy rice in this country. Emissions from crop residue burning are also not a large source compared to soils due to the small portion of residues burned in the United States.

Nitrous oxide is the major GHG emitted from cropland agriculture in the United States. Nitrogen can be converted to  $N_2O$  and emitted directly from agricultural fields (direct emissions), or it can be transported from the field in a form other than  $N_2O$  and then converted to  $N_2O$  elsewhere (indirect emissions). A major source of indirect  $N_2O$ emissions is from nitrate that either leaches into the groundwater or runs off the soil surface and then is converted to  $N_2O$  via aquatic denitrification (Del Grosso et al. 2006). A second source of indirect  $N_2O$ emissions comes from N that is volatilized to the atmosphere, then is deposited back onto soils and converted to  $N_2O$  (Del Grosso et al. 2006).

Cropped soils can be a source or sink of  $CO_2$ . Net  $CO_2$  flux is related to changes soil organic carbon

(SOC) stocks (IPCC 2006). Changes in SOC content are controlled by the balance between C inputs (e.g., atmospheric CO<sub>2</sub> fixed as carbon in plants through photosynthesis) and losses from plant (autotrophic) respiration and decomposition of soil organic matter and plant litter (IPCC 2006). The net balance of CO<sub>2</sub> uptake and loss in soils is driven in part by biological processes, which are affected by soil characteristics and climate. In addition, land use and management can affect the net balance of CO<sub>2</sub> through modifying inputs and rates of decomposition (IPCC 2006). Changes in agricultural practices such as vegetation clearing, water drainage, tillage, crop selection, irrigation, grazing, crop residue management, fertilization, and flooding can modify both organic matter inputs and decomposition and thereby result in a net flux of  $CO_2$  to or from soils.

Most agricultural soils contain comparatively low amounts of organic carbon as a percentage of total soil mass, typically in the range of 1 to 6 percent organic C by weight, and are thus classified as mineral soils (NRCS 1999). However, on an area basis, this amount of carbon typically exceeds that stored in vegetation in most ecosystems. Historically, conversion of native ecosystems to agricultural uses resulted in large soil carbon losses, as much as 30 to 50 percent or more of the C present in the native condition (Haas et al. 1957, Schlesinger 1986, Guo & Gifford 2002, Lal 2004). Presently, after many decades of cultivation, most soils have likely stabilized at lower carbon levels or are increasing their organic matter levels as a result of increasing crop productivity (providing more residues), less intensive tillage, and other improvements in agricultural management practices (Paustian et al. 1997, Allmaras et al. 2000, Follett 2001). Changes in land use or management practices that result in increased organic inputs or decreased oxidation of organic matter (e.g., taking cropland out of production, improved crop rotations, cover crops, application of organic amendments and manure, and reduction or elimination of tillage) usually result in a net accumulation of SOC until a new equilibrium is achieved.

Cultivated organic soils, also referred to as histosols, contain more than 12 to 20 percent organic matter by weight and constitute a special case (NRCS 1999, Brady & Weil 1999). Organic soils form as a result of water-logged conditions, in which decomposition of plant residue is inhibited. When organic soils are drained and cultivated, the rate of decomposition, and hence  $CO_2$  emissions, is greatly accelerated. Due to the depth and richness of the organic layers, carbon loss from cultivated organic soils can continue over long periods of time.

In addition, lime is often added to mineral and organic agricultural soils to reduce acidic conditions. Lime contains carbonate compounds (e.g., limestone and dolomite) that when added to soils release  $CO_2$  through the bicarbonate equilibrium reaction to increase alkalinity (IPCC 2006).

#### 3.2.2 Rice Cultivation

Rice is usually cultivated on flooded fields and is almost always grown in flooded fields in the United States (EPA 2015). This water regime causes CH<sub>4</sub> emissions as a result of waterlogged soils restricting oxygen diffusion and creating conditions for anaerobic decomposition of organic matter, facilitated by CH<sub>4</sub>-emitting, methanogenic bacteria (IPCC 2006, Le Mer & Roger 2001). Methane from paddy rice fields reaches the atmosphere in three ways: bubbling up through the soil, diffusion losses from the water surface, and diffusion through the vascular elements of plants (IPCC 2006). Diffusion through plants is considered the primary pathway, with diffusion losses from surface water being the least important process (IPCC 2006). Soil composition, texture, and temperature are important variables affecting CH<sub>4</sub> emissions from rice cultivation, as are the availability of carbon substrate and other nutrients, soil pH, and partial pressure of CH<sub>4</sub> (IPCC 2006). Since U.S. paddy rice acreage is relatively small compared to other crops, CH<sub>4</sub> emissions from rice cultivation are small compared to other domestic cropland agriculture sources (EPA 2015).

#### 3.2.3 Residue Burning

Crop residues are sometimes burned in fields to prepare for cultivation and control for pests, although this is no longer a common practice in the United States (EPA 2015). While CO<sub>2</sub> is a product of residue combustion, residue burning is not considered a net source of CO<sub>2</sub> to the atmosphere because CO<sub>2</sub> released from burning crop biomass is replaced by uptake of CO<sub>2</sub> in crops growing the following season (IPCC 2006). However,  $CH_4$  and N<sub>2</sub>O, also products of residue combustion, are not recycled into crop biomass through biological uptake the following season. Therefore, residue burning is considered a net source of CH<sub>4</sub> and N<sub>2</sub>O to the atmosphere. Overall, GHG emissions from field burning of crop residues are comparatively small in the United States (EPA 2015).

## 3.3 Nitrous Oxide Emissions from Cropped Soils

In 2013, 65 percent of total cropland soil emissions were direct soil N<sub>2</sub>O emissions (Table 3-2). Of the 19 percent of total emissions from indirect N<sub>2</sub>O, 53 percent are from NO<sub>2</sub> leaching/runoff and the remainder are associated with volatilization (Table 3-4). Emissions are highest from row cops (mostly corn and soybean) because row crops cover the largest land area (Map 3-2) and nitrogen inputs from fertilizer and biological fixation in legumes are high (Figure 3-2). Other factors contributing to high emissions for these crops are that they are grown mostly in the north central region where many of the soils are high in organic matter and some of the soils are poorly drained, both of which enhance denitrification rates. Emissions from the small grain rotation category, or cereals, were the second highest, followed closely by irrigated cropland and hay. Emissions from hay cropping are substantial, despite minimal fertilizer N additions, because a large portion of hay includes N-fixing plants (e.g., alfalfa). Emissions from paddy rice are low, as the cropland areas for this crop are small compared to the other major crops in the United States. Emissions from histosol cultivation are small (~2 percent of total direct emissions) because histosols represent only ~1 million ha, which is less than 1 percent of U.S. cropped land. As explained in Section 3-1, partitioning was performed for rotations (Table 3-4) because emissions are thought to be better correlated to farming systems as opposed to individual crops. Appendix Tables B-2, B-3 and B-4 report direct and indirect N<sub>2</sub>O emissions data at a finer spatial resolution (i.e., MLRA level) for the same cropping rotations presented in Table 3-4. Years beyond 2007 are not included in Table 3-4 and Figure 3-2 because that was the most recent year for which land use data were available and subsequent years were assumed to have identical land use.



**Figure 3-2 Annual Nitrogen Inputs to Cropland Soil, 1990-2007** (Tg N is teragrams nitrogen)



Nitrous oxide emissions are largely driven by nitrogen additions, weather, and soil physical properties. External nitrogen inputs (i.e., addition of synthetic fertilizers and manure, as well as biological fixation) to cropped soils varied between ~17 and 20 MMT N per year between 1990 and 2007 (Fig.

#### Table 3-4 Nitrous Oxide Emissions from Differently Cropped Soils, 5-Year Means

|                                   | 1992  | 1997  | 2002    | 2007  |
|-----------------------------------|-------|-------|---------|-------|
| Rotations <sup>1</sup>            |       | MMT   | CO2 eq. |       |
| USDA Conservation                 |       |       |         |       |
| Reserve Program                   | 2.6   | 3.3   | 2.8     | 2.8   |
| Direct                            | 2.2   | 2.8   | 2.4     | 2.3   |
| Volatilization                    | 0.4   | 0.5   | 0.4     | 0.4   |
| Leaching & Runoff                 | 0.1   | 0.1   | 0.1     | 0.0   |
| Fallow                            | 6.6   | 6.3   | 4.6     | 4.5   |
| Direct                            | 5.8   | 5.6   | 3.8     | 3.9   |
| Volatilization                    | 0.5   | 0.5   | 0.4     | 0.3   |
| Leaching & Runoff                 | 0.3   | 0.3   | 0.4     | 0.3   |
| Hay                               | 15.4  | 17.8  | 16.1    | 16.5  |
| Direct                            | 13.6  | 15.9  | 13.9    | 14.6  |
| Volatilization                    | 0.9   | 0.9   | 1.0     | 1.0   |
| Leaching & Runoff                 | 1.0   | 1.0   | 1.2     | 1.0   |
| Irrigated                         | 19.3  | 22.6  | 22.2    | 21.3  |
| Direct                            | 14.1  | 15.7  | 15.2    | 15.3  |
| Volatilization                    | 1.5   | 1.5   | 1.5     | 1.6   |
| Leaching & Runoff                 | 3.7   | 5.4   | 5.5     | 4.5   |
| Low Residue                       | 2.6   | 3.0   | 3.3     | 3.4   |
| Direct                            | 2.0   | 2.3   | 2.6     | 2.7   |
| Volatilization                    | 0.2   | 0.2   | 0.2     | 0.3   |
| Leaching & Runoff                 | 0.4   | 0.5   | 0.5     | 0.5   |
| Other Cropland                    | 5.4   | 4.9   | 3.6     | 3.3   |
| Direct                            | 4.5   | 4.0   | 3.1     | 2.8   |
| Volatilization                    | 0.5   | 0.4   | 0.3     | 0.3   |
| Leaching & Runoff                 | 0.4   | 0.5   | 0.2     | 0.2   |
| Rice                              | 4.0   | 4.0   | 4.4     | 4.2   |
| Direct                            | 3.5   | 3.5   | 4.0     | 3.8   |
| Volatilization                    | 0.2   | 0.2   | 0.2     | 0.2   |
| Leaching & Runoff                 | 0.3   | 0.3   | 0.3     | 0.2   |
| Row Crop                          | 52.4  | 57.2  | 57.5    | 60.8  |
| Direct                            | 42.9  | 47.5  | 46.0    | 50.5  |
| Volatilization                    | 5.5   | 5.9   | 6.5     | 6.9   |
| Leaching & Runoff                 | 4.0   | 3.7   | 5.0     | 3.4   |
| Small Grain                       | 13.3  | 12.7  | 10.5    | 10.5  |
| Direct                            | 11.7  | 11.2  | 9.1     | 9.1   |
| Volatilization                    | 1.1   | 0.8   | 0.9     | 0.9   |
| Leaching & Runoff                 | 0.6   | 0.7   | 0.4     | 0.4   |
| Tier 1 cropped land               | 24.5  | 27.7  | 26.9    | 28.0  |
| Direct                            | 18.8  | 21.1  | 20.5    | 21.3  |
| Volatilization                    | 2.3   | 2.6   | 2.5     | 2.6   |
| Leaching & Runoff                 | 3.4   | 4.0   | 3.9     | 4.1   |
| Histosol Cultivation <sup>2</sup> | 2.7   | 2.6   | 2.5     | 2.6   |
| All Direct                        | 119.1 | 129.7 | 120.4   | 126.2 |
| All Volatilization                | 13.0  | 13.5  | 14.0    | 14.6  |
| All Leaching &                    |       |       |         |       |
| Runoff                            | 14.0  | 16.3  | 17.5    | 14.5  |
| Total                             | 148.8 | 162.1 | 154.5   | 157.9 |

Note: MMT CO2 eq. is million metric tons carbon dioxide equivalent

<sup>1</sup> Emissions from residue burning are not included.

<sup>2</sup> Direct emissions.

3-2), while N<sub>2</sub>O emissions varied between 141 and 172 MMT CO, eq. However, variation in N inputs explained less than 5 percent of the variability in soil N<sub>2</sub>O emissions. Also, the years with highest nitrogen inputs did not necessarily lead to the highest N<sub>2</sub>O emissions. This indicates that other factors such as changes in weather patterns strongly influence the annual variability in estimated N<sub>2</sub>O emissions. Specifically, amount and timing of precipitation, temperature patterns, and soil carbon and nitrogen availability interact to influence N<sub>2</sub>O emissions. Because the responses of N<sub>2</sub>O emissions to the controlling variables are often non-linear and the interactions complex, the correlations between any single variable (or even groups of variables) and measured emissions are typically weak (Stehfest and Bouwman 2006, Nishina et al. 2012, Philibert 2012).

## 3.3.1 Methods for Estimating N<sub>2</sub>O Emissions from Cropped Soils

Emissions of  $N_2O$  from nitrogen additions to cropland soils and cultivation of histosol soils are source categories analogous to those covered in Agricultural Soil Management in the U.S. GHG Inventory (EPA 2015), with some exceptions. The U.S. GHG Inventory (EPA 2015) includes direct emissions of  $N_2O$  from livestock on grazed lands, while the USDA GHG Inventory includes this source under Livestock GHG Emissions in Chapter 2 of this report. For this report, indirect  $N_2O$  from grazing is included in the livestock chapter while indirect emissions from urban areas and other nonagricultural sources are not covered at all.

Briefly, the DayCent ecosystem model was used to estimate direct soil N<sub>2</sub>O emissions, NO<sub>2</sub> leaching, and nitrogen volatilization from most land area covered by major crop types and many specialty crops. Default Tier 1 emission factors from IPCC (2006) were used to estimate direct and indirect emissions from cropped soils not included in the DayCent simulations and to calculate indirect emissions from DayCent estimates of NO<sub>2</sub> leaching and volatilization. IPCC (2006) methodology was also used to estimate emissions from cultivation of organic soils. Use of a process-based model, such as DayCent, for inventories is known as a Tier 3 approach, while use of IPCC (2006) methodology is referred to as a Tier 1 approach. The methodology summarized below shows how the Tier 1 and Tier 3 approaches can be combined to derive overall emission estimates. Refer to EPA (2015) for a complete description of the methodologies used to estimate N<sub>2</sub>O emissions.

#### Map 3-2 U.S. Cropped Land



Data obtained from the 2011 National Land Cover Database at http://www.mrlc.gov

## 3.3.2.1 IPCC Tier 3 DayCent Simulations for Most Cropped Soils

The DayCent ecosystem model (Del Grosso et al. 2001, Parton et al. 1998) was used to estimate direct N<sub>2</sub>O emissions from most mineral soils producing most commodity and specialty crops, including alfalfa hay, barley, corn, cotton, dry beans, grass hay, grass-clover hay, oats, onions, peanuts, potatoes, rice, sorghum, soybeans, sugar beets, sunflowers, tomatoes, wheat, and other crops) which represent approximately 87 percent of total cropland in the United States. DayCent simulates crop growth, soil organic matter decomposition, greenhouse gas fluxes, and key biogeochemical processes affecting N<sub>2</sub>O emissions. The simulations are driven by model input data generated from daily weather records, land management, and soil physical properties determined in national soil surveys.

DayCent simulates carbon and nitrogen dynamics, soil water content and temperature, and other ecosystem variables (Parton et al.1994). Key sub models include: plant growth, senescence of biomass, decomposition of dead plant material and soil organic matter, and mineralization of nitrogen. Model inputs are monthly maximum/minimum air temperature and precipitation, surface soil texture class, soil hydric condition, vegetation type, and land management information (e.g., cultivation timing and intensity, timing and amount of fertilizer and organic matter amendments). Soil organic matter is simulated to a depth of 20-30 cm, while water, temperature, and mineral nitrogen are simulated throughout the soil profile. Soil organic matter is divided into three pools based on decomposability: active (turns over in months to years), slow (turns over in decades), and passive (turns over in centuries). The model accounts for the effects of nutrient availability, water, and temperature on plant growth (CO, uptake) and the effects of these factors, as well as cultivation, on decomposition (CO, release). The ability of the model to integrate carbon gains and losses and simulate plant growth and soil carbon levels reliably has been demonstrated using data from many sites in the United States and around the world (Parton et al.1994, Cerri et al. 2007, Ogle et al. 2007). The model has been shown to work in all the major biomes of the earth and can accurately reproduce the impacts of climate, soil texture, and land management on carbon fluxes (Parton et al. 1993, Kelly et al. 1997, Lugato 2007, Bricklemyer 2007). DayCent has been parameterized to represent the major commodity crops, as well as many specialty crops, grown in the United States. In addition to not being parameterized to simulate all crops, the model also does not simulate any crops grown on organic soils.





DayCent simulations were conducted at the National Resources Inventory (NRI) point resolution. The NRI has information on cropping and land-use histories (USDA 2009). The NRI is a statistically based sample of all non-Federal land, and includes 380,956 points in agricultural land for the conterminous United States that are included in the Tier 3 methods. Each point is associated with an expansion factor that allows scaling of N<sub>2</sub>O emissions from NRI points to the entire country (i.e., each expansion factor represents the amount of area with similar land-use/ management history as the sample point). Land use and some management information (e.g., crop type, soil attributes, and irrigation) were originally collected for each NRI point on a 5-year cycle beginning in 1982. For cropland, data were collected for 4 out of 5 years in the cycle (i.e., 1979–1982, 1984–1987, 1989–1992, and 1994–1997). In 1998, the NRI program began collecting annual data, and at the time of this report's analysis, data were currently available through 2007.

The simulations reported here assumed conventional tillage cultivation, gradual improvement of cultivars, and gradual increases in fertilizer application until 1978. We accounted for improvements of cultivars (cultivated varieties) because, for example, it is unrealistic to assume that modern corn is identical, in terms of yield potential, nitrogen demand, etc., to corn grown in 1900. Realistic simulations of historical land management and vegetation type are important because they influence present day soil carbon and nitrogen levels, which influence present day nitrogen cycling and associated N<sub>2</sub>O emissions. In addition to simulating historical crop management, the model also represented at least 1,000 years of native vegetation before land was initially plowed.



Nitrous oxide emission estimates from DayCent include the influence of N additions, crop type, irrigation, and other factors in aggregate, and therefore it is not possible to reliably partition N<sub>2</sub>O emissions by anthropogenic activity (e.g., N<sub>2</sub>O emissions from synthetic fertilizer applications cannot be distinguished from those resulting from manure applications). Consequently, emissions are not subdivided according to activity (e.g., N fertilization, manure amendments), as is suggested in the IPCC Guidelines, but the overall estimates are likely more accurate than the more simplistic Tier 1 method, which is not capable of addressing the broader set of driving variables influencing N<sub>2</sub>O emissions. Thus DayCent forms the basis for a more complete estimation of N<sub>2</sub>O emissions than is possible with the Tier 1 methodology.

## *3.3.2.2* Sources of Uncertainty for DayCent Simulations

The DayCent model results imbed three types of uncertainty: model input uncertainty, model structural uncertainty, and land-area scaling uncertainty. Uncertainty in three types of model inputs (N additions from synthetic fertilizer, N and C additions from manure, and tillage intensity) was addressed using Monte Carlo analysis (Del Grosso et al. 2010). For example, although mean amounts of N fertilizer applied to different crops are known, the amounts of fertilizer applied by particular farmers are uncertain. Monte Carlo analysis provides a method to quantify how this type of uncertainty impacts N<sub>2</sub>O emissions. Probability distribution functions (PDFs) were derived from surveys at the county scale for the inputs in most cases. A Monte Carlo analysis was used with 100 iterations for each NRI point; random draws were made from PDFs for fertilizer, manure application, and tillage. An adjustment factor was also selected from PDFs with normal densities to represent the dependence between manure amendments and N fertilizer application rates.

Model structural error stems from models not being perfect representations of reality. That is, models contain assumptions and imperfectly represent the processes that control crop growth and  $N_2O$ emissions. This component is the largest source of uncertainty in the Tier 3 model-based inventory analysis, accounting for more than 80 percent of the overall uncertainty in the final estimates (Ogle et al. 2009, Del Grosso et al. 2010). To quantify model structural error,  $N_2O$  emissions generated by DayCent were compared with emissions measured in 24 field plots at various locations around the world, but mostly from the United States. Specifically, an empirically based procedure was applied to develop a structural uncertainty estimator from the relationship between modeled results and field measurements (Ogle et al. 2007). Model inputs are assumed to be precisely known for the experiments so structural uncertainty can be isolated.

The third element is the uncertainty associated with scaling the DayCent results for each NRI point to the entire land base by using the expansion factors provided with the NRI survey dataset. The expansion factors represent the number of hectares associated with the land use and management history for a particular point. This uncertainty is determined by computing the variances from a set of replicated weights for the expansion factor.

3.3.2.3 Activity Data for DayCent Simulations The National Resources Inventory provided land use information for the DayCent simulations. The NRI has a stratified multi-stage sampling design, where primary sample units are stratified on the basis of county and township boundaries defined by the U.S. Public Land Survey (Nusser and Goebel 1997). Within a primary sample unit, typically a 160-acre (64.75 ha) square quarter-section, three sample points are selected according to a restricted randomization procedure. Each point in the survey is assigned an expansion factor based on other known areas and land-use information (Nusser and Goebel 1997). In principle, the expansion factors represent the amount of area with the land use and land-use change history that is the same as the point location. It is important to note that the NRI uses a sampling approach, and therefore there is some uncertainty associated with scaling the point data to a region or the country using the expansion factors. In general, those uncertainties decline at courser scales, such as States, compared to smaller county units, because of a larger sample size. An extensive amount of soils, land use, and land management data have been collected through the survey (Nusser et al. 1998). Primary sources for data include aerial photography and remote sensing imagery as well as field visits and county office records. In addition to providing land cover information, NRI differentiates between irrigated and non-irrigated land, but does not provide more detailed information on the type and intensity of irrigation. Hence, irrigation is modeled by assuming that applied water to field capacity with intervals between irrigation events where the soils drain to about 60 percent of field capacity.

The annual NRI data product provides crop data for most years between 1979 and 2007, with the exception of 1983, 1988, and 1993. These years are gap-filled using an automated set of rules so that cropping sequences are filled with the most likely crop type given the historical cropping pattern at each NRI point location. NRI points are included in the land base for the agricultural soil  $N_2O$  emissions inventory if they were identified as cropland or grassland between 1990 and 2007. Land use for 2008 to 2013 is assumed to be the same as 2007, but will be updated with newer NRI as it becomes available (i.e., USDA 2013). Note that the NRI includes only non-Federal lands because Federal lands are not classified into land uses as part of the NRI survey (i.e., they are only designated as Federal lands).

Data on N fertilizer rates were based primarily on the USDA Agricultural Resource Management Survey (USDA 1997a, 2011b). In these surveys, data on inorganic N fertilization rates are collected for most of the crops simulated by DayCent in the high-production States and for a subset of lowproduction States. These data are used to build a time series of fertilizer application rates for specific crops and States for 1990-2013. Mean fertilizer rates and standard deviations for irrigated and rainfed crops are produced for each State. If a State is not surveyed for a particular crop or if there are not enough data to produce a State-level estimate, then data are aggregated to USDA Farm Production Regions in order to estimate a mean and standard deviation for fertilization rates (Farm Production Regions are groups of States in the United States with similar agricultural commodities) (USDA 2014). If Farm Production Region data are not available, crop data are aggregated to the entire United States to estimate a mean and standard deviation. Standard deviations for fertilizer rates are used to construct PDFs with log-normal densities in order to address uncertainties in application rates. The survey summaries also present estimates for fraction of crop acres receiving fertilizer, and these fractions are used to determine if a crop is receiving fertilizer. Alfalfa hay and grassclover hay are assumed to not be fertilized, but grass hay is fertilized according to rates from published farm enterprise budgets (NRIAI 2003).

Manure N addition rates were based on data developed by the USDA Natural Resources Conservation Service (NRCS) (Edmonds et al. 2003). USDA-NRCS has coupled estimates of manure N produced with estimates of manure N recoverability by animal waste management system to produce county-level rates of manure N application to cropland and pasture. Edmonds et al. (2003) estimated the area amended with manure and application rates in 1997 for both manure-producing farms and manure-receiving farms within a county for two scenarios, one before implementation of Comprehensive Nutrient Management Plans (baseline) and one after implementation (Edmonds et al. 2003).





For DayCent simulations, the rates for manureproducing farms and manure-receiving farms have been area weighted and combined to produce a single county-level estimate for the amount of land amended with manure and the manure N application rate for each crop in each county. The estimates were based on the assumption that Comprehensive Nutrient Management Plans have not been fully implemented. This is a conservative assumption because it allows for higher leaching rates due to some over application of manure to soils. In order to address uncertainty in these data, uniform probability distributions are constructed based on the proportion of land receiving manure versus the amount not receiving manure for each crop type and pasture. For example, if 20 percent of land producing corn in a county is amended with manure, randomly drawing a value equal to or greater than 0 and less than 20 would lead to a simulation with a manure amendment, while drawing a value greater than or equal to 20 and less than 100 would lead to no amendment in the simulation.

Edmonds et al. (2003) only provides manure application rate data for 1997, but the amount of managed manure available for soil application changes annually, so the area amended with manure is adjusted relative to 1997 to account for all the manure available for application in other years. Specifically, the manure N available for application in other years is divided by the manure N available in 1997. If the ratio is greater than 1, there is more manure N available in that county relative to the amount in 1997, and so it is assumed a larger area is amended with manure. In contrast, ratios less than 1 imply less area is amended with manure because there is a lower amount available in the year compared to 1997. The amendment area in each county for 1997 is multiplied by the ratio to reflect the impact of manure N availability on the area amended. The amount of managed manure N available for application to soils is calculated by determining the populations of livestock on feedlots or otherwise housed, requiring collection and management of the manure. To estimate C inputs (associated with manure N application rates derived from Edmonds et al. (2003), carbon-nitrogen (C:N) ratios for livestock-specific manure types are adapted from the Agricultural Waste Management Field Handbook (USDA 1996), On-Farm Composting Handbook (NRAES 1992), and recoverability factors provided by Edmonds et al (2003). The C:N ratios are applied to county-level estimates of manure N excreted by animal type and management system to produce a weighted county average C:N ratio for manure amendments. The average C:N ratio is used to determine the associated C input for crop

amendments derived from Edmonds et al. (2003). To account for the common practice of reducing inorganic N fertilizer inputs when manure is added to a cropland soil, crop-specific reduction factors are derived from mineral fertilization data for land amended with manure versus land not amended with manure in the ERS 1995 Cropping Practices Survey (USDA 1997a). Mineral N fertilization rates are reduced for crops receiving manure N based on a fraction of the amount of manure N applied, depending on the crop and whether it is irrigated or rainfed. The reduction factors are randomly selected from PDFs with normal densities in order to address uncertainties in the dependence between manure amendments and mineral fertilizer application.

Tillage practices are estimated for each cropping system based on data from the Conservation Technology Information Center (CTIC 2004). CTIC compiles data on cropland area under five tillage classes by major crop species and year for each county in the United States. Because the surveys involve county-level aggregate area, they do not fully characterize tillage practices as they are applied within a management sequence (e.g., crop rotation). This is particularly true for area estimates of cropland under no-till, which include a relatively high proportion of "intermittent" no-till, where no-till in one year may be followed by tillage in a subsequent year. For example, a common practice in maizesoybean rotations is to use tillage in the maize crop while no-till is used for soybean, such that no-till practices are not continuous in time. Estimates of the area under continuous no-till are provided by experts at CTIC to account for intermittent tillage activity and its impact on soil C (Towery 2001).

Tillage practices are grouped into three categories: full, reduced, and no-tillage. Full tillage is defined as multiple tillage operations every year, including significant soil inversion (e.g., plowing, deep disking) and low surface-residue coverage. This definition corresponds to the intensive tillage and "reduced" tillage systems as defined by CTIC (2004). No-till is defined as not disturbing the soil except through the use of fertilizer and seed drills and where no-till is applied to all crops in the rotation. Reduced tillage made up the remainder of the cultivated area, including mulch tillage and ridge tillage as defined by CTIC and intermittent no-till. The specific tillage implements and applications used for different crops, rotations, and regions to represent the three tillage classes are derived from the 1995 Cropping Practices Survey by the Economic Research Service (USDA 1997a).

Daily maximum/minimum temperature and precipitation data are based on gridded weather data from the North America Regional Reanalysis Product (NARR) (Mesinger et al. 2006). It is necessary to use computer-generated weather data because weather station data do not exist near all NRI points and, moreover, weather station data are for a point in space. The NARR product uses this information with interpolation algorithms to derive weather patterns for areas between these stations. NARR weather data are available for the United States from 1980 through 2007 at a 32 km resolution. Each NRI point is assigned the NARR weather data for the grid cell containing the point.

Soil texture and natural drainage capacity (i.e., hydric versus non-hydric soil characterization) are the main soil variables used as input to the DayCent model. Texture is one of the main controls on soil processes in the DayCent model, which uses particle-size fractions of sand (50-2,000  $\mu$ m), silt (2-50  $\mu$ m), and clay (< 2 µm) as inputs. Hydric soils are poorlydrained and hence prone to have a high water table for part of the year in their native (pre-cultivation) condition. Non-hydric soils are moderately to well drained.<sup>2</sup> Poorly drained soils can be subject to anaerobic (lack of oxygen) conditions if water inputs (precipitation and irrigation) exceed water losses from drainage and evapotranspiration. Depending on moisture conditions, hydric soils can range from being fully aerobic to completely anaerobic, varying over the year. Other soil characteristics needed for simulations, such as field capacity and wilting-point water contents, are estimated from soil texture data using a standardized hydraulic properties calculator (Saxton et al. 1986). Soil input data are derived from Soil Survey Geographic Database (SSURGO) (Soil Survey Staff 2011). The data are based on field measurements collected as part of soil survey and mapping. Each NRI point is assigned the dominant soil component in the polygon containing the point from the SSURGO data product.

### 3.3.2 IPCC Tier 1 Methodology for Cropped Land Not Simulated by DayCent

### 3.3.2.1 Mineral Soils

For mineral agricultural soils not simulated by DayCent, the Tier 1 IPCC methodology was used to estimate direct  $N_2O$  emissions. Estimates of direct  $N_2O$  emissions from N applications to non-major crop types were based on the annual increase in mineral soil N from the following practices: (1) the application of synthetic commercial fertilizers,



(2) the retention of crop residues, and (3) and nonmanure organic fertilizers.

Annual synthetic fertilizer nitrogen additions to cropped land not simulated by DayCent are calculated by process of elimination. For each year, fertilizer applied to cropped and grazed lands simulated by DayCent was subtracted from total fertilizer used on farms in the United States. The difference was assumed to be applied to cropped land not simulated by DayCent. Residue nitrogen for these crops was derived from information on crop production yields, residue management (retained versus burned or removed), mass ratios of aboveground residue to crop product, dry matter fractions, and nitrogen contents of the residues (IPCC 2006). The activity data for these practices were obtained from the following sources:

 Annual production statistics for crops whose residues are left on the field: USDA (2014), Schueneman (1997, 1999a- 2001), Deren (2002), Kirstein (2003- 2004, 2006), Gonzalez (2007-2014), Cantens (2004- 2005), Lee (2003 -2007), Slaton (1999- 2001), Wilson (2002- 2007, 2009-2012), Hardke (2013, 2014), Linscombe (1999, 2001-2014), Anderson (2008- 2014), Klosterboer (1997, 1999- 2003), Stansel (2004- 2005), Texas Agricultural Experiment Station (2006, 2007-2014).



<sup>&</sup>lt;sup>2</sup> Artificial drainage (e.g., ditch- or tile-drainage) is simulated as a management variable.

 Crop residue N was derived by combining amounts of above- and below-ground biomass, which were determined based on crop production yield statistics (USDA 2014), dry matter fractions (IPCC 2006), linear equations to estimate above-ground biomass given dry matter crop yields (IPCC 2006), ratios of belowto-above-ground biomass (IPCC 2006), and N contents of the residues (IPCC 2006).

Estimates of total national annual N additions from land application of other organic fertilizers were derived from organic fertilizer statistics (TVA 1991-1994, AAPFCO 1995- 2014). The organic fertilizer data, which are recorded in mass units of fertilizer, had to be converted to mass units of N by multiplying by the average organic fertilizer N contents provided in the annual fertilizer publications. These N contents are weighted average values and vary from year-toyear (ranging from 2.3 percent to 3.9 percent over the period 1990 through 2004). Annual on-farm use of these organic fertilizers is very small, less than 0.03 MMT N.

IPCC Tier 1 methodology for emissions from mineral soils is based on nitrogen inputs. Nitrogen inputs from synthetic and organic fertilizer and above- and below-ground crop residues were added together. This sum was multiplied by the default Tier 1 emission factor (1.0 percent) to derive an estimate of cropland direct  $N_2O$  emissions from non-major crop types. Nitrate leached or runoff and N volatilized from non-major crop types are calculated by multiplying N fertilizer applied by the Tier 1 default factors (30 percent and 10 percent, respectively).

#### 3.3.2.2 Cultivation of Histosols

The IPCC Tier 1 method was used to estimate direct N<sub>2</sub>O emissions from the drainage and cultivation of organic cropland soils. Estimates of the total U.S. acreage of drained organic soils cultivated annually for temperate and sub-tropical climate regions was obtained for 1982, 1992, and 1997 from the NRI (USDA 2000, as extracted by Eve 2001 and amended by Ogle 2002), using temperature and precipitation data from Daly et al. (1998, 1994). To estimate annual N<sub>2</sub>O emissions from histosol cultivation, the temperate histosol area is multiplied by the IPCC default emission factor for temperate soils (8 kg N<sub>2</sub>O-N/ha cultivated; IPCC 2006), and the subtropical histosol area is multiplied by the average of the temperate and tropical IPCC default emission factors (12 kg N<sub>2</sub>O-N/ha cultivated; IPCC 2006).

#### 3.3.2.3 Total N<sub>2</sub>O Emissions

Total direct emissions were obtained by summing DayCent-generated emissions from most crops on

mineral soils, Tier 1-generated estimates for crops on mineral soils not simulated by DayCent, and Tier 1 estimates of emissions from organic soils. Total indirect emissions from NO<sub>2</sub> leaching or runoff in landscapes where annual water inputs from precipitation and irrigation exceed potential evaporation rates were obtained by adding DayCent estimates for most crops on mineral soils to Tier 1 default estimates for crops on mineral soils not simulated by DayCent and multiplying by the default emission factor (0.75 percent of N leached/runoff). Total indirect emissions from nitrogen volatilization were obtained by adding DayCent estimates for most crops on mineral soils to Tier 1 estimates for crops on mineral soils not simulated by DayCent and multiplying by the default emission factor (1 percent of N volatilized). Indirect emissions from NO<sub>2</sub> leaching or runoff were added to those from nitrogen volatilization to get total indirect emissions. Total direct and indirect emissions were then summed to get total N<sub>2</sub>O emissions from cropped soils.

### 3.3.3 Uncertainty in N<sub>2</sub>O Emissions

Uncertainty was combined for direct emissions from crop rotations simulated by DayCent, croplands not calculated by DayCent, and indirect emissions from all cropped lands. Section 3.3.2.2 describes uncertainty for direct emissions calculated using DayCent. Uncertainty for direct emissions from cropped lands not simulated by DayCent was estimated using simple error propagation (IPCC 2006). Uncertainty in indirect emissions for most crops combined uncertainty in DayCent estimates of nitrate leaching and N gas volatilization based on the Monte Carlo simulations with uncertainty in the IPCC Tier 1 emissions factors used to convert these N loss vectors to N<sub>2</sub>O emissions. Uncertainty in indirect emissions for crops not simulated by DayCent combined uncertainty in IPCC Tier 1 emissions factors for nitrate leaching and N gas volatilization with uncertainty in the IPCC Tier 1 emissions factors used to convert these N loss vectors to N<sub>2</sub>O emissions. Error propagation was used to combine uncertainties in the various components by taking the square root of the sum of the squares of the standard deviations of the components (IPCC 2006). The 95-percent confidence interval in N<sub>2</sub>O emissions was estimated to lie between 153 and 281 MMT CO<sub>2</sub> eq. (Table 3-1).

## 3.3.4 Changes Compared to the 3rd edition of the USDA GHG Report

There were several changes compared to the previous edition of the inventory. The most important was using NRI for land use information. In previous



Chapter 3

inventories, land cover was based on USDA-NASS statistics for areas of major crops (corn, soybeans, wheat, alfalfa hay, other hay, sorghum, and cotton) at the county level and region-specific assumptions regarding common cropping practices. For example, in the north central United States, corn and soybean were assumed to alternate every other year in a 2-year rotation cycle and were not irrigated while corn grown in Western States was assumed to be irrigated and grown continuously instead of being rotated with other crops. In contrast to these regionspecific assumptions for land use, NRI data represent actual land use during any particular year. For example, a given NRI point could have irrigated corn grown for 3 years, followed by 2 years of irrigated soybean, followed by a year of non-irrigated wheat.

Another improvement relates to land area considered eligible to contribute to indirect  $N_2O$  from  $NO_3$  leached or runoff from cropped fields. Instead of assuming that nitrate leaching and runoff can occur anywhere, a criterion was used to designate lands where nitrate is susceptible to be leached or runoff into waterways, as suggested by IPCC (2006). This is based on observations that in semi-arid and arid areas, nitrate can be leached below the rooting zone, but it does not enter waterways because water tables in dry areas are low or non-existent.

Other changes are related to improvements in the DayCent model and uncertainty estimation. The most noteworthy of these changes relates to expanding the number of study sites used to quantify model uncertainty for direct  $N_2O$  emissions and bias correction. There were also various changes to the DayCent model, including modifying algorithms to more realistically represent plant and soil processes and modifying parameters to improve model outputs. For example, the temperature algorithm used to simulate crop production as well as soil carbon inputs was modified. These changes resulted in an increase in  $N_2O$  emissions of approximately 4 percent, relative to the previous inventory.

#### 3.3.5 Mitigation of N<sub>2</sub>O Emissions

Mitigation of  $N_2O$  emissions is based on optimizing the amount and timing of nitrogen fertilizer additions. Excess fertilizer applied to crops increases the nitrogen available for  $N_2O$ , N oxide, NH<sub>3</sub> emissions and NO<sub>3</sub> leaching. Using enhanced efficiency fertilizers designed to release N slowly or formulated with nitrification inhibitors and applying fertilizer in multiple applications should improve the synchrony between nitrogen supply and plant nitrogen demand. However, multiple applications of fertilizer require increased time and equipment usage by farmers and enhanced efficiency fertilizers are more expensive than conventional fertilizers. Use of nitrification inhibitors and slow-release fertilizers has been shown to decrease N<sub>2</sub>O emissions in some systems (Migliorati et al. 2015, Halvorson et al. 2014, Akiyama et al. 2010, Weiske et al. 2001, McTaggert et al. 1997). However, use of these improved fertilizers does not always result in N<sub>2</sub>O mitigation (Parkin and Hatfield 2014, Dell et al. 2014, Sistani et al. 2011), and there is some evidence that these fertilizers are more effective in irrigated systems and when rainfed systems receive consistent precipitation (Hatfield and Venterea 2014). Climate-specific scaling factors have been developed to represent the expected direct N<sub>2</sub>O reduction for enhanced efficiency fertilizers and are reported in a recent USDA publication (Ogle et al. 2014). Ogle et al. (2014) also includes scaling factors for the expected reductions in NO<sub>3</sub> leaching (which contributes to indirect N2O emissions) for leguminous and nonleguminous cover crops.

# 3.4 Methane Emissions From Rice Cultivation

Methane emissions from rice cultivation<sup>3</sup> are limited to seven U.S. States (Figure 3-3). In four States (Arkansas, Florida, Louisiana, and Texas), the climate allows for cultivation of two rice crops per season, the second of which is referred to as a ratoon crop (EPA 2015). Methane emissions from primary and ratoon crops are accounted for separately because emissions from ratoon crops tend to be higher (EPA 2015). Overall, rice cultivation is a small source of CH<sub>4</sub> in the United States. In 2013, CH<sub>4</sub> emissions totaled 8.3 MMT CO<sub>2</sub> eq., of which 5.8 MMT CO<sub>2</sub> eq. were from primary crops in all seven States and 2.5 MMT CO<sub>2</sub> was from ratoon crops in four States (Table 3-5).

<sup>3</sup> This source focuses on CH4 emissions resulting from anaerobic decomposition and does not include emissions from burning of rice residues. The latter is covered in section 3.5.



Figure 3-3 Methane from Rice Cultivation by State, 1990 & 2013 (MMT CO, eq. is million metric tons of carbon dioxide equivalent)



|             | 1990 | 1995 | 2000 | 2005 | 2006 | 2007  | 2008    | 2009 | 2010 | 2011 | 2012 | 2013 |
|-------------|------|------|------|------|------|-------|---------|------|------|------|------|------|
| Source      |      |      |      |      |      | MMT ( | CO2 eq. |      |      |      |      |      |
| Primary     | 6.7  | 7.4  | 7.2  | 6.7  | 5.6  | 5.5   | 5.9     | 6.2  | 7.2  | 5.2  | 5.3  | 5.8  |
| Arkansas    | 2.9  | 3.2  | 3.4  | 3.3  | 2.8  | 2.7   | 2.8     | 3.0  | 3.6  | 2.3  | 2.6  | 2.6  |
| California  | 0.8  | 1.0  | 1.2  | 0.9  | 0.9  | 1.0   | 0.9     | 1.0  | 1.0  | 1.0  | 1.0  | 1.2  |
| Florida     | 0.0  | 0.1  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0     | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Louisiana   | 1.3  | 1.4  | 1.2  | 1.1  | 0.7  | 0.8   | 0.9     | 0.9  | 1.1  | 0.8  | 0.8  | 1.0  |
| Mississippi | 0.6  | 0.7  | 0.5  | 0.5  | 0.4  | 0.4   | 0.5     | 0.5  | 0.6  | 0.3  | 0.3  | 0.3  |
| Missouri    | 0.2  | 0.3  | 0.4  | 0.4  | 0.4  | 0.4   | 0.4     | 0.4  | 0.5  | 0.3  | 0.4  | 0.4  |
| Texas       | 0.8  | 0.8  | 0.5  | 0.4  | 0.3  | 0.3   | 0.3     | 0.3  | 0.4  | 0.4  | 0.3  | 0.3  |
| Ratoon      | 2.5  | 2.4  | 2.4  | 0.8  | 0.9  | 1.3   | 1.9     | 1.8  | 2.1  | 1.9  | 2.1  | 2.5  |
| Arkansas    | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0     | 0.0  | 0.0  | 0.0  | 0.4  | 0.4  |
| Florida     | 0.0  | 0.1  | 0.1  | 0.0  | 0.0  | 0.0   | 0.0     | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Louisiana   | 1.3  | 1.3  | 1.5  | 0.5  | 0.5  | 0.9   | 1.2     | 1.1  | 1.4  | 1.0  | 1.1  | 1.2  |
| Texas       | 1.1  | 1.0  | 0.8  | 0.4  | 0.4  | 0.3   | 0.6     | 0.7  | 0.7  | 0.9  | 0.5  | 0.8  |
| Total       | 9.2  | 9.8  | 9.6  | 7.5  | 6.5  | 6.7   | 7.8     | 7.9  | 9.3  | 7.1  | 7.4  | 8.3  |

Table 3-5 Methane from Rice Cultivation from Primary and Ratoon Operations by State, 1990, 1995, 2000, 2005-2013

Note: MMT CO2 eq. is million metric tons carbon dioxide equivalent.

Arkansas and California had the highest CH<sub>4</sub> emissions (2.6 MMT CO<sub>2</sub> eq. and 1.2 MMT CO<sub>2</sub> eq. respectively) from rice cultivation in 2013, followed by Louisiana and Missouri. Mississippi, Texas, and Florida each had emissions less than or equal to 0.4 MMT CO<sub>2</sub> eq. (Table 3-5). State-level shifts in  $CH_4$ emissions are positively correlated with changes in area of rice cultivation (Appendix Table B-5). For example, since 1990, CH<sub>4</sub> emissions from rice cultivation have decreased by nearly 10 percent, while total area of rice cultivation has decreased by 11 percent. The State of Texas accounts for most of the overall reduction, with a decline of 43 percent (Table 3-6). Appendix Table B-5 provides a complete time series of areas harvested for rice by State with primary versus ratoon crops from 1990-2013.

## Table 3-6 Change in Methane Emissions from Rice Cultivation, 1990-2013

|             | 1990 | 2013    | 1990-2013 |
|-------------|------|---------|-----------|
| State       | MMT  | CO2 eq. | % Change  |
| Arkansas    | 2.88 | 2.99    | 4         |
| California  | 0.85 | 1.21    | 42        |
| Florida     | 0.08 | 0.08    | 5         |
| Louisiana   | 2.60 | 2.23    | -14       |
| Mississippi | 0.60 | 0.30    | -50       |
| Missouri    | 0.19 | 0.37    | 95        |
| Texas       | 1.96 | 1.12    | -43       |
| Total       | 9.16 | 8.30    | -9        |

Note: MMT CO2 eq. is million metric tons carbon dioxide equivalent.

## 3.4.1 Methods for Estimating CH<sub>4</sub> Emissions From Rice Cultivation

The EPA provided estimates for  $CH_4$  emissions from rice cultivation for this report. Details on the

methods are provided below and are excerpted, with permission from EPA, from Chapter 6 of the U.S. GHG Inventory report (EPA 2015). The method used by EPA applies area-based seasonally integrated emission factors (i.e., amount of  $CH_4$  emitted over a growing season per unit harvested area) to harvested rice areas to estimate annual  $CH_4$  emissions from rice cultivation. The EPA derives specific  $CH_4$  emission factors from published studies containing rice field measurements in the United States, with separate emissions factors for ratoon and primary crops to account for higher seasonal emissions in ratoon crops.

A review of published experiments was used to develop emissions factors for primary and ratoon crops (EPA 2015). Experiments where nitrate or sulfate fertilizers or other substances believed to suppress  $CH_4$  formation were applied, and experiments where measurements were not made over an entire flooding season or where floodwaters were drained mid-season were excluded from the analysis. The remaining experimental results were then sorted by season (i.e., primary and ratoon) and type of fertilizer amendment (i.e., no fertilizer added, organic fertilizer added, and synthetic and organic fertilizer added). The experimental results from primary crops with synthetic and organic fertilizer added (Bossio et al. 1999, Cicerone et al. 1992, Sass et al. 1991a and 1991b) were averaged to derive an emission factor for the primary crop, and the experimental results from ratoon crops with synthetic fertilizer added (Lindau et al. 1995, Lindau & Bollich 1993) were averaged to derive an emission factor for the ratoon crop. The resultant emission factor for the primary crop is 237 kg CH<sub>4</sub>/ha per season, and the



Chapter 3

resultant emission factor for the ratoon crop is 780 kg  $CH_4$ /ha per season (EPA 2015).

### 3.4.2 Uncertainty in Estimating Methane Emissions From Rice Cultivation

The following discussion of uncertainty in estimating GHG emissions from rice cultivation is modified from information provided in the U.S. GHG Inventory (EPA 2015). The information is reproduced here with permissions from the EPA.

Methane emission factors are the largest source of uncertainty in estimates for rice cultivation. Seasonal emissions, derived from field measurements in the United States, vary by more than an order of magnitude resulting from a variation in cultivation practices, fertilizer applications, cultivar types, soil, and climatic conditions. Some variability is accounted for by separating primary from ratoon areas. However, even within a cropping season, measured emissions vary significantly. Of the experiments that were used to derive the emission factors used here, primary emissions ranged from 61 to 500 kg CH<sub>4</sub>/ha per season and ratoon emissions ranged from 481 to 1,490 kg CH<sub>4</sub>/ha per season (EPA 2015). Other sources of uncertainty include the primary rice-cropped area for each State, percent of rice-cropped area that is ratooned, the length of the growing season, and the extent to which flooding outside of the normal rice season is practiced. Uncertainties in primary and ratooned areas were based on expert judgement and estimates of the portion of ratooned areas by State. Uncertainty

regarding flooding outside the normal growing season was estimated for California (+/- 20 percent), but insufficient data were available to estimate this uncertainty source for other States.

To quantify the uncertainties for emissions from rice cultivation, a Monte Carlo (Tier 2) uncertainty analysis was performed using the information provided above. The results of the Tier 2 quantitative uncertainty analysis are summarized in Table 3-1. Rice cultivation  $CH_4$  emissions in 2013 were estimated to be between 4 and 16 MMT  $CO_2$  eq. at a 95-percent confidence level, which indicates a range of 50 percent below to 91 percent above the actual 2013 emission estimate of 8 MMT  $CO_2$  eq.

### 3.5 Residue Burning

Greenhouse gas emissions from field burning of crop residues are a function of the amount and type of residues burned. In the United States, crop residues burned include wheat, rice, sugarcane, corn, cotton, soybeans, and lentils and often occur in the Southeastern States, the Great Plains, and the Pacific Northwest (EPA 2015). For most crops, a small portion of residues are burned each year, but a higher portion of rice residues are burned annually (EPA 2015). Consequently, emissions from residue burning are a small source of overall crop-related emissions in the United States. One-fourth of GHG emissions from residue burning, across all crop types, consisted of  $CH_4$  in 2013; the remaining emissions were N<sub>2</sub>O (Table 3-7, Figure 3-4). The highest GHG

|                 | 1990 | 1995 | 2000 | 2005 | 2006 | 2007 | 2008               | 2009 | 2010 | 2011 | 2012 | 2013 |
|-----------------|------|------|------|------|------|------|--------------------|------|------|------|------|------|
| Source          |      |      |      |      |      | M    | MT CO <sub>2</sub> | eq.  |      |      |      |      |
| CH <sub>4</sub> | 0.32 | 0.28 | 0.31 | 0.22 | 0.28 | 0.28 | 0.32               | 0.29 | 0.29 | 0.30 | 0.30 | 0.31 |
| Wheat           | 0.16 | 0.13 | 0.14 | 0.10 | 0.10 | 0.12 | 0.16               | 0.12 | 0.12 | 0.14 | 0.13 | 0.13 |
| Rice            | 0.05 | 0.05 | 0.05 | 0.04 | 0.05 | 0.07 | 0.05               | 0.06 | 0.06 | 0.05 | 0.05 | 0.05 |
| Sugarcane       | 0.07 | 0.06 | 0.06 | 0.03 | 0.07 | 0.03 | 0.04               | 0.05 | 0.04 | 0.05 | 0.05 | 0.05 |
| Corn            | 0.02 | 0.02 | 0.03 | 0.02 | 0.04 | 0.04 | 0.04               | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 |
| Cotton          | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00               | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Soybeans        | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02               | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
| Lentils         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00               | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| $N_2O$          | 0.10 | 0.09 | 0.10 | 0.08 | 0.09 | 0.10 | 0.11               | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
| Wheat           | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.04               | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 |
| Rice            | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.03 | 0.02               | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
| Sugarcane       | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01               | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| Corn            | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01               | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| Cotton          | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00               | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Soybeans        | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02               | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
| Lentils         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00               | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Total           | 0.42 | 0.37 | 0.41 | 0.30 | 0.37 | 0.38 | 0.43               | 0.39 | 0.38 | 0.40 | 0.40 | 0.42 |

### Table 3-7 Greenhouse Gas Emissions from Agriculture Burning by Crop, 1990, 1995, 2000, 2005–2013

Note: MMT CO2 eq. is million metric tons carbon dioxide equivalent. CH4 is methane; N2O is nitrous oxide; CO2 is carbon dioxide.







emissions were from burning of wheat crop residues, at 42 percent. Burning of rice, sugarcane, corn, and soybean crop residues each contributed 20 percent or less to overall GHG emissions. Burning of lentil crop residues contributed almost nothing to this source of GHG due to the relatively small amount of land area planted with this crop. This is also why a small increase in land area (Figure 3-5) for lentil crops from 1990 to 2013 exhibits such a dramatic proportional increase (Figure 3-6).







Figure 3-6 Percent Change in Commodity Production, 1990-2013

Total GHG emissions from residue burning decreased 8 percent from 1990 to 2013. Trends in relative GHG emissions were similar across crop types in 1990 compared to 2013, with a few exceptions. In both 1990 and 2013, burning of wheat residues contributed the most to GHG emissions from residue burning, while rice burning was the second-largest source. Between 1990 and 2013, soybean and corn for grain production (excluding corn for silage) both increased in absolute amounts, while GHG emissions from burning decreased in wheat (Figure 3-5). Proportionally, soybean production increased slightly more than corn but still not near the level of increase for lentil production (Figure 3-6). Despite the higher nitrogen content in soybeans relative to corn, corn production was still greater than soybean production in 2013 (Table 3-8), thus resulting in higher GHG emissions from corn residue burning.

Appendix Table B-6 provides the complete time series of crop production from 1990 to 2013 for crop types that contribute to GHG emissions from burning. Appendix Table B-7 provides nationwide data for crop production managed with burning by year. Production of crops such as corn and soybeans has been slowly increasing since 1990, with other crops like wheat, rice, and sugarcane remaining relatively constant or decreasing. Wheat production has declined since the mid-1990s. The State-level rice harvest estimates were provided directly by EPA based on State production data.

## 3.5.1 Methods for Estimating CH<sub>4</sub> and N<sub>2</sub>O Emissions from Residue Burning

A Tier 2 method (EPA 2015) was used to estimate greenhouse gas emissions from field burning of agricultural residues. The methodology described below is summarized with permission from EPA.



| Crop                 | 1990  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  |  |  |
|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| MMT of product       |       |       |       |       |       |       |       |       |       |       |  |  |
| Corn <sup>1</sup>    | 222.2 | 311.1 | 294.9 | 365.1 | 338.6 | 366.6 | 348.5 | 346.1 | 301.8 | 351.3 |  |  |
| Cotton               | 3.7   | 5.7   | 5.2   | 4.6   | 3.1   | 2.9   | 4.3   | 3.7   | 4.2   | 2.8   |  |  |
| Legumes <sup>2</sup> | 0.0   | 0.3   | 0.2   | 0.2   | 0.1   | 0.3   | 0.4   | 0.2   | 0.3   | 2.1   |  |  |
| Rice                 | 7.8   | 11.2  | 9.7   | 10.0  | 10.2  | 11.0  | 12.2  | 9.2   | 10.0  | 8.6   |  |  |
| Soybeans             | 57.8  | 92.1  | 95.9  | 80.3  | 89.0  | 100.8 | 99.9  | 92.8  | 90.4  | 91.4  |  |  |
| Sugarcane            | 28.1  | 26.6  | 29.6  | 30.0  | 27.6  | 30.4  | 27.4  | 29.2  | 32.2  | 27.9  |  |  |
| Wheat                | 81.9  | 63.1  | 54.3  | 61.5  | 75.0  | 66.5  | 66.2  | 60.0  | 68.1  | 58.1  |  |  |

#### Table 3-8 Agricultural Crop Production

Note: MMT is million metric tons.

Source: USDA, NASS Crop Production 2014 Summary

<sup>1</sup>Corn for grain (i.e., excludes corn for silage).

<sup>2</sup>Legumes are dry beans, peas, and lentils

The equation below was used to estimate the amounts of carbon and nitrogen released during burning.

C or N released =  $\Sigma$  for all crop types and State:

AB/(CAH x CP x RCR x DMF x BE x CE x (FC or FN))

where, Area Burned (AB) = Total area of crop burned, by State; Crop Area Harvested (CAH) = Total area of crop harvested, by State; Crop Production (CP) = Annual production of crop in Gg, by State; Residue/Crop Ratio (RCR) = Amount of residue produced per unit of crop production, by State; Dry Matter Fraction (DMF) = Amount of dry matter per unit of biomass for a crop; Fraction of C or N (FC or FN) = Amount of C or N per unit of dry matter for a crop; Burning Efficiency (BE) = The proportion of pre-fire fuel biomass consumed; and Combustion Efficiency (CE) = The proportion of C or N released with respect to the total amount of C or N available in the burned material, respectively.

Crop production and area harvested were available by State and year from USDA (2014) for all crops (except rice in Florida and Oklahoma, as detailed below). The amount C or N released was used in the following equation to determine the  $CH_4$  and  $N_2O$  emissions from the field burning of agricultural residues:

 $CH_4$  or  $N_2O$  Emissions from Field Burning of Agricultural Residues = C or N Released × ER for C or N × CF

where, Emissions Ratio (ER) = g  $CH_4$ -C released, or g  $N_2O$ -N /g N released, and Conversion Factor (CF) = conversion, by molecular weight ratio, of  $CH_4$ -C to C (16/12), or N<sub>2</sub>O-N to N (44/28).

National and State-level crop production statistics are provided in Appendix Table B-6 and Appendix Table B-7. The sources for developing these input data are described for each parameter below. Values used in the equation above to estimate emissions from residue burning are summarized in Appendix Tables B-8(a-c).

#### Annual Crop Production:

Crop production data for all crops except rice in Florida and Oklahoma were taken from the USDA's Field Crops, Final Estimates 1987–1992, 1992–1997, 1997–2002 (USDA 1994, 1998, 2003), and Crop Production Summary (USDA 2005-2014). Rice production data for Florida and Oklahoma, which are not collected by USDA, were estimated separately. Average primary and ratoon crop yields for Florida (Schueneman & Deren 2002) were applied to Florida acreages (Schueneman 1999b, 2001; Deren 2002; Kirstein 2003, 2004; Cantens 2004, 2005; Gonzalez 2007-2014), and crop yields for Arkansas (USDA 1994, 1998, 2003, 2005- 2009) were applied to Oklahoma acreages (Lee 2003- 2006; Anderson 2008, 2009).

Residue-to-Crop Product Mass Ratios:

All residue:crop product mass ratios except sugarcane and cotton were obtained from Strehler and Stützle (1987). The ratio for sugarcane is from Kinoshita (1988) and the ratio for cotton is from Huang et al. (2007). The residue: crop ratio for lentils was assumed to be equal to the average of the values for peas and beans. Residue dry matter fractions for all crops except soybeans, lentils, and cotton were obtained from Turn et al. (1997). Soybean and lentil dry-matter fractions were obtained from Strehler and Stützle (1987); the value for lentil residue was assumed to equal the value for bean straw. The cotton dry-matter fraction was taken from Huang et al. (2007). The residue C contents and N contents for all crops except soybeans and cotton are from Turn et al. (1997). The residue C content for soybeans is the IPCC default (IPCC/UNEP/OECD/IEA 1997). The N content of soybeans is from Barnard and Kristoferson (1985). The C and N contents of lentils were assumed to equal those of soybeans. The C and N contents



of cotton are from Lachnicht et al. (2004). These data are listed in Table 5-27. The burning efficiency was assumed to be 93 percent, and the combustion efficiency was assumed to be 88 percent for all crop types except sugarcane (EPA 1994). For sugarcane, the burning efficiency was assumed to be 81 percent (Kinoshita 1988) and the combustion efficiency was assumed to be 68 percent (Turn et al. 1997). Emission ratios and conversion factors for all gases (see Table 5-28) were taken from the Revised 1996 IPCC Guidelines (IPCC/UNEP/OECD/IEA 1997).

#### Fraction of Residues Burned:

The fraction of crop area burned was calculated using data on area burned by crop type and State from McCarty (2010) for corn, cotton, lentils, rice, soybeans, sugarcane, and wheat. McCarty (2010) used remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate area burned by crop. State-level area burned data were divided by State-level crop-area-harvested data to estimate the percent of crop area burned by crop type for each State. As described above, all croparea-harvested data were from USDA (2014) except for rice acreage in Florida and Oklahoma, which is not measured by USDA (Schueneman 1999, 2000, 2001; Deren 2002; Kirstein 2003, 2004; Cantens 2004, 2005; Gonzalez 2007-2014; Lee 2003- 2007; Anderson 2008- 2014). Data on crop area burned were only available from McCarty (2010) for the years 2003 through 2007. For other years in the time series, the percent area burned was set equal to the average 5-year percent area burned, based on data availability and interannual variability. This average was taken at the crop and State level. Table 5-26 shows these percent-area estimates aggregated for the United States as a whole, at the crop level. State-level estimates based on State-level crop-area-harvested and area burned data were also prepared, but are not presented here.

## 3.5.2 Uncertainty in Estimating Methane and Nitrous Oxide Emissions from Residue Burning

Calculations for crop-specific burned areas, residue-to-crop harvest ratios, burning/combustion efficiencies, and other factors contribute to overall uncertainty. A Monte Carlo analysis was performed to quantify these uncertainties. The calculated 95-percent confidence interval was 0.07 to 0.14 MMT CO<sub>2</sub> eq. for N<sub>2</sub>O emissions from residue burning, or 30 percent below and 32 percent above the estimate of 0.1 MMT CO<sub>2</sub> eq. and 0.15 to 0.36 MMT CO<sub>2</sub> eq. for CH<sub>4</sub> emissions from residue burning, or 41 percent below and 42 percent above the estimate of 0.31 MMT CO<sub>2</sub> eq. (Table 3-1).

## 3.5.3 Changes Compared to the 3rd edition of the USDA GHG Report

The methodology was revised relative to the previous inventory to incorporate more recent State- and croplevel data on area burned from McCarty (2010). Cotton and lentils were added as crops, and peanuts and barley were removed because McCarty (2009) found that their residues are not burned in significant quantities in the United States. Fraction of residue burned was calculated at the State and crop level based on McCarty (2010) and USDA (2010) data, rather than assuming a 3-percent burn rate for all crops except rice and sugarcane, as was used in the previous inventory. Because the percent area burned was lower than previously assumed for almost all crops, these changes resulted in an average decrease in CH<sub>4</sub> emissions of about 66 percent and an average decrease in N<sub>2</sub>O emissions of about 80 percent across the time series, compared to the previous inventory.



Map 3-3a Soil Carbon Changes for Major Land Resource Areas, Tier 3 Crops, Annual Means 2003-2007 ( $Gg CO_2 eq$ . is gigagrams carbon dioxide equivalent.)



Map 3-3b Unit Area Soil Carbon Changes for Major Land Resource Areas, Tier 3 Crops, Annual Means 2003–2007 (Mg CO<sub>2</sub> eq. ha<sup>-1</sup> yr<sup>-1</sup> is megagrams carbon dioxide equivalent per hectare per year.)



## 3.6 Carbon Stock Changes in Cropped Soils

Except for cultivated organic soils and liming practices, cropped soils in the United States were estimated to accumulate about 34 MMT  $CO_2$  eq. in 2013 (Table 3-1)<sup>4</sup>. Much of the carbon change is attributable to the land enrolled in the CRP and land used to grow hay (Figure 3-7). Practices such as the adoption of conservation tillage, including no-till, which have taken place over the past two decades, and reduced frequency of summer fallow are important drivers of carbon stock changes. Manure applications to cropland also impact the estimated soil carbon stock.

In contrast, the small area of cultivated organic soils (less than 1 million hectares) concentrated in Florida, California, the Gulf and Southeastern coastal region and parts of the upper Midwest was a net source of CO<sub>2</sub> emissions for all years covered by the inventory (1990-2013). In 2013, about 27 MMT CO<sub>2</sub> eq. was emitted from cultivation of these soils (Table 3-1). Liming of agricultural soils resulted in emissions of about 6 MMT CO<sub>2</sub> eq. per year. Total net carbon sequestration in 2013 equaled ~1 MMT CO<sub>2</sub> eq. when all of the above components were taken into consideration. Carbon uptake on agricultural soils varied between 1990 and 2013 (Table 3-2), driven largely by land use changes and weather fluctuations.

Many regions in the Corn Belt, Great Plains, and Eastern United States are storing C in cropped mineral soils due to adoption of reduced tillage and other practices (see Map 3-3a for total emissions and Maps 3-3b and 3-4 for emissions per unit area). On average, conventional till soils used for annual cropping were a source of about 0.25 MT CO<sub>2</sub> eq. ha-1 yr-1, reduced till soils were roughly carbon neutral, and no-till soils stored about 0.68 MT CO<sub>2</sub> eq. ha-1 yr-1. Note that the maps in this chapter only show C stock changes for mineral soils and, as stated above, emissions from cropped organic soils are significant in some regions.



**Figure 3-7 CO2 Emissions and Sequestration Sources from Cropland Soils, 2003-2007** (MMT CO<sub>2</sub> eq. is million metric tons of carbon dioxide equivalent. CRP is USDA Conservation Reserve Program)



Map 3-4a Soil Carbon Changes for Major Land Resource Areas, Tier 3 Crops Conventional Till, Annual Means 2003-2007 (Mg CO<sub>2</sub> eq. ha<sup>-1</sup> yr<sup>-1</sup> is megagrams carbon dioxide equivalent per hectare per year.)



Map 3-4b Soil Carbon Changes for Major Land Resource Areas, Tier 3 Crops Reduced Till, Annual Means 2003-2007 (Mg CO<sub>2</sub> eq. ha<sup>-1</sup> yr<sup>-1</sup> is megagrams carbon dioxide equivalent per hectare per year.)



**Map 3-4c Soil Carbon Changes for Major Land Resource Areas, Tier 3 Crops No Till, Annual Means 2003-2007** (Mg CO<sub>2</sub> eq. ha<sup>-1</sup> yr<sup>-1</sup> is megagrams carbon dioxide equivalent per hectare per year.)



<sup>&</sup>lt;sup>4</sup> Emissions and sinks of carbon in agricultural soils are expressed in terms of CO2 equivalents; carbon sequestration is a result of changes in stocks of carbon in soils, from which CO2 fluxes are inferred. Units of CO2 equivalent can be converted to carbon using a multiplier of 0.272.

## 3.6.1 Methods for Estimating Carbon Stock Changes in Agricultural Soils

Two broad categories of cropland were considered: cropland remaining cropland and land converted to cropland. Within both of these categories, Tier 2 and Tier 3 methodologies were used. The Tier 2 approach is based on relatively simple equations used in IPCC (2003) methodology that have been modified to better represent nations or regions within nations. The Tier 3 approach (DayCent model) uses a more complex ecosystem model to simulate carbon fluxes for cropped systems. Both tiers used land use and management data based primarily on the NRI (USDA 2009). The NRI represents a robust statistical sampling of land use and management on all non-Federal land in the United States, and more than 400,000 NRI survey points occurred in agricultural lands and were used in the inventory analysis. The methodology summarized below is described in detail in the U.S. GHG Inventory (EPA 2015).

### 3.6.2 Tier 3 DayCent Model Simulations for Most Cropped Mineral Soils

In this section, we highlight aspects of the DayCent model relevant to soil C stocks because the simulations described in detail in section 3.3.2 apply here except for the quantification of model structural uncertainty. Namely, soil C stock changes generated by DayCent were compared with measurements from 84 long-term field plots to quantify structural uncertainty for this GHG source. Soil C stock change estimates from DayCent reflect the balance between C additions from plant residues that are not removed during harvest operations and manure amendments and C losses from decomposition of plant residues and soil organic matter. Note that the model does not account for C losses from erosion nor gains from deposition of soil or organic matter.

## 3.6.3 Tier 2 Approach for Remaining Cropped Mineral Soils, Organic Soils, and Liming

A Tier 2 approach was used to estimate soil carbon stock changes for crop rotations not simulated by the DayCent model, for non-agricultural lands that were converted to cropland, and for organic soils. Data on climate, soil type, and land use were used to classify land area and apply appropriate stock change factors. U.S.-specific carbon stock change factors were derived from published literature to estimate the impact of management practices (e.g., changes in tillage or crop rotation) on soil carbon fluxes (Ogle et al. 2003, 2006b). Cultivated histosol areas are listed in Appendix Table B-9, carbon loss rates from organic soils under agricultural management in the United States are listed in Appendix Table B-10, MLRA-level estimates of annual soil carbon stock changes by major land use and management type





are listed in Appendix Table B-11, and State-level estimates of mineral soil carbon changes on cropland by major activity are listed in Appendix Table B-12.

Stock change factors and reference carbon stocks can vary for different climate regimes and soil types. The IPCC method defines eight climate types according to mean annual temperature, precipitation, and potential evapotranspiration. Six of these occur in the continental United States. The PRISM longterm monthly climate data set (Daly et al. 1998) was used to classify each of the 180 MLRAs in the United States into climate zones. Reference soil carbon stocks were stratified by climate region and categorized into six major groupings, based on taxonomic orders that relate to soil development and physical characteristics that influence soil carbon contents. Estimates for carbon stocks under conventionally managed cropland (defined as the reference land use) were derived from the National Soil Survey Characterization Database (USDA 1997b).

Based on the NRI, crop management systems were aggregated into 22 different categories. Tillage practices are not included in the NRI. Thus, supplemental data were used from the Conservation Technology Information Center (CTIC 1998), which provides spatial information on tillage practices. Data for wetland restoration under CRP were obtained from Euliss and Gleason (2002). Organic soils (i.e., peat, mucks) that have been drained and converted to cropland or pasture are subject to potentially high rates of carbon loss. Annual C losses were estimated using IPCC (1997, 2006) methodology except that U.S.-specific carbon loss rates were used in the calculations instead of the default IPCC rates (Ogle et al. 2003). Manure N amendments over the inventory time period were based on application rates and areas amended with manure N from Edmonds et al. (2003).

Limestone and dolomite are often applied to acidic soils to raise the pH. However, CO, is emitted when these materials degrade. Emissions were estimated using a Tier 2 approach. Application rates were derived from estimates and industry sources (Minerals Yearbook, published by the U.S. Bureau of Mines through 1994 and by the U.S. Geological Survey from 1994 to present). The emission factors used, 0.059 ton CO<sub>2</sub>-C/1 ton limestone and 0.064ton  $CO_2$ -C/1 ton dolomite, are lower than the default IPCC emission factors because they account for a portion of limestone that may leach through soils and travel through waterways to the ocean (West & McBride 2005). The methodology summarized above is described in detail in Chapter 7 of the U.S. GHG Inventory (EPA 2015).

### 3.6.4 Uncertainty in Estimating Carbon Stock Changes in Agricultural Soils

Uncertainty was calculated separately for the Tier 3 and Tier 2 approaches used to estimate soil CO<sub>2</sub> fluxes. The methodologies summarized below are described in detail in Chapter 7 and Annex 3.13 of the U.S. GHG Inventory (EPA 2015). Uncertainty was combined for soil C stock changes on mineral soils for crop rotations simulated by DayCent, mineral soils for crop rotations not calculated by DayCent, cropped organic soils, and emissions from liming. Section 3.3.2.2 describes uncertainty for crop rotations calculated using DayCent. Uncertainty for the remaining sources was estimated using simple error propagation (IPCC 2006). Error propagation was used to combine uncertainties in the various components by taking the square root of the sum of the squares of the standard deviations of the components (IPCC 2006). The combined 95-percent confidence interval for C stock change in cropped soils in 2013 ranged from -39 to 38 MMT CO<sub>2</sub> eq. around the estimate of -1 MMT CO<sub>2</sub> eq. (Table 3-1). Because the estimate (-1 MMT CO<sub>2</sub> eq.) is close to 0 (i.e., C neutral) the uncertainty bounds in Table 3-1 stated as percentages are very wide.

There were important changes in land classification data that affected C stock change estimates. More recent annual data from the USDA NRI were used to classify land use and management practices in this edition. In previous inventories, NRI data were collected in 5-year increments, and the last available year was 1997. Availability of new annual data extended the time series of activity data beyond 1997 to 2007. In addition, annual C flux estimates for mineral soils between 1990 and 20013 were adjusted to account for additional C stock changes associated with sewage sludge amendments using a Tier 2 method provided in IPCC (2003, 2006), which utilizes U.S.-specific C loss rates (Ogle et al. 2003) rather than default IPCC rates. Overall, these methodological changes resulted in an average decline in mineral soil C sequestration of about 14 percent during 1990-2008. The smaller average C sequestration estimated with the current methodology results mainly from smaller estimates during the latter part of the time series. This is due to using updated NRI data instead of assuming that land use was constant after 1997.



## **3.7** Mitigation of CO<sub>2</sub> Emissions

Currently, cropped mineral soils in the United States are estimated to be storing carbon at a rate of approximately 34 MMT CO<sub>2</sub> per year, but this is largely nullified when emissions from cropped organic soils and liming are accounted. Taking organic soils out of production provides an opportunity to mitigate emissions because they make up less than 1 percent of total cropped land in the United States, but are a source of 27 MMT CO<sub>2</sub> per year (Table 3-1). Other strategies to increase carbon storage and decrease net C emissions include increasing cropping intensity, conversion to CRP, reducing tillage intensity, and amending soils with organic matter. Increasing cropping intensity by growing cover crops and minimizing fallow periods can sequester C because carbon inputs to soil are increased. When soils are fallow, particularly during summer, carbon levels tend to decrease because plants are not present to provide carbon inputs but decomposition of soil carbon by microbes continues. Growing-season length limits where fall-spring cover crops can be grown, while soil moisture availability precludes growing summer crops every year in some arid areas of the United States. Cropped land converted to CRP stores carbon because the land is not cultivated and trees or grasses are planted to provide carbon inputs that typically exceed those of annual crops. However, increases in demand, particular for grains supplied by row crops, have led to conversion of CRP back to cropping in recent years. Including hay or pasture in rotations also increases carbon inputs, and carbon losses are lower because the land is not tilled during the hay or pasture phase of the rotation. Further reductions in tillage intensity should also store C, but this is not feasible in all regions. Additions of organic matter (manure and compost) and biochar also typically promote C sequestration in soil, but transportation and other costs associated with these amendments limit their widespread use.

#### SUGGESTED CITATION

Del Grosso, S.J., S.M. Ogle, M. Reyes-Fox, K.L. Nichols, E. Marx, and A. Swan, 2016. Chapter 3: Cropland Agriculture. In U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2013, Technical Bulletin No. 1943, United States Department of Agriculture, Office of the Chief Economist, Washington, DC. 137 pp. September 2016. Del Grosso S.J. and M. Baranski, Eds. Agroforestry practices such as establishing windbreaks and riparian forest buffers represent another potential carbon sink in cropland agriculture. Comprehensive data on agroforestry practices are not available to estimate the current national levels of carbon sequestration from such practices. However, published research studies have estimated the potential agroforestry carbon sink in the United States. In temperate systems, agroforestry practices store large amounts of carbon (Kort & Turlock 1999, Schroeder 1994), with the potential ranging from 15 to 198 metric tons of carbon per hectare (modal value of 34 metric tons of carbon per hectare) (Dixon 1995). Nair and Nair (2003) estimated that by the year 2025, the potential carbon sequestration of agroforestry in the United States will be 90 million metric tons of carbon per year.

## 3.8 Planned Improvements

There are many updates currently being made to the methodology to calculate GHG emissions from croplands. Land cover/use activity data are being improved by accounting for USDA NRI time series and land use/management data through 2010. Improvements to the DayCent crop phenology sub-model are anticipated to better represent senescence, particularly following grain filling in crops. In addition, the effects of temperature on plant production will be improved by continued calibration of DayCent. The number of experimental study sites used for testing will be expanded to more accurately assess model structural uncertainty, and studies measuring daily N<sub>2</sub>O fluxes frequently will be given higher priority because they provide more robust estimates of annual emissions than do studies that measure emissions less frequently. Another planned improvement is to account for the use of slowrelease fertilizers and nitrification inhibitors. Field investigations suggest that the use of these types of N sources often contribute to reductions in the rate of N<sub>2</sub>O emissions, and although the DayCent model is capable of simulating use of nitrification inhibitors, validation requires that simulated data be compared with data from a sufficient number of in situ studies. Currently there is a mismatch between the amount of residue DayCent simulates for burning and the amount of residue burned according to the Field Burning of Agricultural Residues source category (EPA 2015). Significant updates have been made to this source category based on new spatial data, and ideally, future DayCent simulations will account for the same amount of residue available for burning. Hawaii and Alaska are not currently included in the inventory for agricultural soil management, except for N<sub>2</sub>O emissions from drained organic soils (croplands and grasslands) in Hawaii. In addition to more fully including Alaska and Hawaii in the subsequent inventory, it is also expected that more crop types will be incorporated to the DayCent model simulations and removed from the Tier 1 analyses. Soil C stock changes with land use conversion from forest land to cropland are undergoing further evaluation to ensure consistency in the landrepresentation time series. Different methods are used to estimate soil C stock changes in forest land and croplands, and while the areas have been reconciled between these land uses, there has been limited evaluation of the consistency in C stock changes with conversion from forest land to cropland.



### 3.9 References

AAPFCO (1995-2000a, 2002-2007). Commercial Fertilizers. Association of American Plant Food Control Officials. University of Kentucky. Lexington, KY.

AAPFCO (2008-2014). Commercial Fertilizers. Association of American Plant Food Control Officials. University of Missouri. Columbia, MO.

Akiyama, Hiroko, Xiaoyuan Yan, and Kazuyuki Yagi (2010). Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for  $N_2O$  and NO emissions from agricultural soils: meta-analysis. Global Change Biology, 16.6: 1837-1846.

Allmaras, R.R., H.H. Schomberg, C.L. Douglas, and T.H. Dao (2000). Soil organic carbon sequestration potential of adopting conservation tillage in U.S. croplands. Journal of Soil and Water Conservation, 55:365-373.

Anderson, M. (2008-2014). Email correspondence. Monte Anderson, Oklahoma Farm Service Agency and ICF International.

Barnard, G. and L. Kristoferson (1985). Agricultural residues as fuel in the Third World. Earthscan Energy Information Programme and the Beijer Institute of the Royal Swedish Academy of Sciences, London, England.

Bossio, D.A., W. Horwath, R.G. Mutters, and C. Van Kessel (1999). Methane pool and flux dynamics in a rice field following straw incorporation. Soil Biology and Biochemistry, 31:1313-1322.

Brady, N. and R. Weil (1999). The nature and properties of soils: twelfth edition. Prentice Hall, Upper Saddle River, NJ.

Bricklemyer, R.S., P.R. Miller, P.J. Turk, K. Paustian, T. Keck and G.A. Nielsen (2007). Sensitivity of the century model to scalerelated soil texture variability. Soil Science Society of America Journal, 71:784-792.

Cantens, G. (2004-2005). Telephone conversation between Lauren Flinn of ICF Consulting and Janet Lewis, Assistant to Gaston Cantens, Vice President of Corporate Relations, Florida Crystals Company.

Cerri, C.E.P., M. Easter, K. Paustian, K. Killian, K. Coleman, M. Bernoux, P. Falloon, D.S. Powlson, N. Batjes, E. Milne, and C.C. Cerri (2007). Simulating soil organic carbon changes in 11 land use change chronosequences from the Brazilian Amazon with RothC and Century models. Agriculture, Ecosystem, and Environment, 122:46-57.

Cicerone, R.J., C.C. Delwiche, S.C. Tyler, and P.R. Zimmerman (1992). Methane emissions from California rice paddies with varied treatments. Global Biogeochemical Cycles, 6:233-248.

CTIC (1998). 1998 crop residue management executive summary. Conservation Technology Information Center. Available online at <a href="http://www.ctic.purdue.edu/Core4/CT/CT.html">http://www.ctic.purdue.edu/Core4/CT/CT.html</a>.

CTIC (2004). 2004 Crop Residue Management Survey. Conservation Technology Information Center. Available online at <a href="http://www.ctic.purdue.edu/CRM/>">http://www.ctic.purdue.edu/CRM/></a>.

Daly, C., R.P. Neilson, and D.L. Phillips (1994). A statisticaltopographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology, 33:140-158. Daly, C., G.H. Taylor, W.P. Gibson, T. Parzybok, G.L. Johnson, and P.A. Pasteris (1998). Development of high quality spatial datasets for the United States. Pp. I 512-I 519 in Proceedings, 1st international conference on geospatial information in agriculture and forestry. Lake Buena Vista, FL, June 1-3.

Del Grosso, S.J., W.J. Parton, A.R. Mosier, M.D. Hartman, J. Brenner, D.S. Ojima, and D.S. Schimel (2001). Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model. Pp 303-332 in Modeling carbon and nitrogen dynamics for soil management. M. Schaffer, L. Ma, and S. Hansen, editors. CRC Press, Boca Raton, FL.

Del Grosso, S.J., W.J. Parton, A.R. Mosier, M.K. Walsh, D.S. Ojima, and P.E. Thornton (2006). DAYCENT national-scale simulations of  $N_2O$  emissions from cropped soils in the USA. Journal of Environmental Quality, 35:1451-1460. doi: 10.2134/jeq2005.0160.

Del Grosso, S.J., S.M. Ogle, W.J. Parton, F.J. Breidt (2010). Estimating Uncertainty in N<sub>2</sub>O Emissions from US Cropland Soils, Global Biogeochemical Cycles, 24, GB1009, doi:10.1029/2009GB003544.

Dell, Curtis J., K. Han, R.B. Bryant, J.P. Schmidt (2014). Nitrous oxide emissions with enhanced efficiency nitrogen fertilizers in a rainfed system. Agronomy Journal 106.2:723-731.

Deren, C. (2002). Telephone conversation between Caren Mintz of ICF Consulting and Chris Deren, Everglades Research and Education Centre at the University of Florida.

Dixon, R.K. (1995). Agroforestry systems: sources or sinks of greenhouse gases? Agroforestry Systems, 31:99-116.

Edmonds, L., N. Gollehon, R.L. Kellogg, B. Kintzer, L. Knight, C. Lander, J. Lemunyon, D. Meyer, D.C. Moffitt, and J. Schaeffer (2003). Costs associated with development and implementation of comprehensive nutrient management plans, part 1: nutrient management, land treatment, manure and wastewater handling and storage, and recordkeeping. Natural Resource Conservation Service, United States Department of Agriculture, Government Printing Office, Washington, D.C.

EPA (1994). International anthropogenic methane emissions: estimates for 1990. Report to Congress. EPA 230R-93-010. Office of Policy Planning and Evaluation, U.S. Environmental Protection Agency, Washington, D.C.

EPA (2015). U.S. Greenhouse Gas Inventory Report: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013. Environmental Protection Agency, Office of Atmospheric Programs, Washington D.C. April, 2015. Available online at <http://www.epa.gov/climatechange/ghgemissions/ usinventoryreport.html>

Euliss, N. and R. Gleason (2002). Wetland restoration factor estimates and restoration activity data. Compiled by N. Euliss and R. Gleason, USGS, Jamestown, ND, for S. Ogle, National Resource Ecology Laboratory, Fort Collins, CO.

Eve, M., D. Pape, M. Flugge, R. Steele, D. Man, M. Riley-Gilbert, and S. Biggar, Eds. (2014). Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory. Technical Bulletin Number 1939, Office of the Chief Economist, United States Department of Agriculture, Washington, DC. 606 pages. July 2014.



Firestone, M.K., and E.A. Davidson (1989). Microbial basis of NO and N<sub>2</sub>O production and consumption in soils. Pp. 7-21 in Exchange of trace gases between terrestrial ecosystems and the atmosphere. M.O. Andreae and D.S. Schimel, editors. John Wiley, New York, NY.

Follett, R.L., J.M. Kimble, and R. Lal (2001). The potential of U.S. grazing lands to sequester soil carbon. In The potential of U.S. grazing lands to sequester soil carbon and mitigate the greenhouse effect. R.L. Follett and J.M. Kimble, editors. CRC Press, Boca Raton, FL.

Gonzalez, R. (2007-2014). Email correspondence. Rene Gonzalez, Plant Manager, Sem-Chi Rice Company and Sarah Menassian, ICF International.

Guo, L.B. and R.M. Gifford (2002). Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 4(8):345-360. doi:10.1046/j.1354-1013.2002.00486.x.

Haas, H.J., C.E. Evans, and E.F. Miles (1957) Nitrogen and carbon changes in Great Plains soils as influenced by cropping and soil treatments. Technical bulletin number 1164. United States Department of Agriculture, Government Printing Office, Washington, D.C.

Halvorson, A.D., C.S. Snyder, A.D. Blaylock, and S.J. Del Grosso (2014). Enhanced Efficiency Nitrogen Fertilizers: Potential Role in Nitrous Oxide Emission Mitigation. Agronomy Journal, 106: 715-722, doi:10.2134/agronj2013.0081.

Hardke, J. (2013). Email correspondence. Jarrod Hardke, Rice Extension Agronomist at the University of Arkansas Rice Research and Extension Center and Cassandra Snow, ICF International. July 15, 2013.

Hardke, J. (2014). Personal Communication. Jarrod Hardke, Rice Extension Agronomist at the University of Arkansas Rice Research and Extension Center and Kirsten Jaglo, ICF International. September 11, 2014.

Hatfield, Jerry L., and Rodney T. Venterea (2014). Enhanced efficiency fertilizers: a multi-site comparison of the effects on nitrous oxide emissions and agronomic performance. Agronomy Journal 106.2: 679-680.

Huang, Y., W. Zhang, W. Sun, and X. Zheng (2007) Net Primary Production of Chinese Croplands from 1950 to 1999. Ecological Applications, 17(3):692-701.

IPCC (2003). Good practice guidance for land use, land-use change, and forestry. J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe and F. Wagner, editors. Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme, Technical Support Unit, Kanagawa, Japan. Available online at <a href="http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf">http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.</a>

IPCC (2006). IPCC guidelines for national greenhouse gas inventories, vol. 4: agriculture, forestry and other land use. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, editors. Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme, Technical Support Unit, Kanagawa, Japan. Available online at <a href="http://www.ipcc-nggip.iges.or.jp">http://www.ipcc-nggip.iges.or.jp</a>. IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press. Cambridge, United Kingdom 996 pp.

IPCC (2010). Revisiting the use of managed land as a proxy for estimating national anthropogenic emissions and removals. Eggleston HS, Srivastava N, Tanabe K, Baasansuren J, (eds.).Institute for Global Environmental Studies, Intergovernmental Panel on Climate Change, Hayama, Kanagawa, Japan.

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K., Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

IPCC/UNEP/OECD/IEA (1997). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change, United Nations Environment Programme, Organization for Economic Co-Operation and Development, International Energy Agency, Paris, France.

Kelly, R.H., W.J. Parton, G.J. Crocker, P.R. Grace, J. Klir, M. Korschens, P.R. Poulton, and D.D. Richter (1997) Simulating trends in soil organic carbon in long-term experiments using the Century model. Geoderma, 81:75-90.

Kinoshita, C.M. (1988). Composition and processing of burned and unburned cane in Hawaii. International Sugar Journal 90:1070, 34-37.

Kirstein, A. (2003-2004, 2006). Personal communication. Arthur Kirstein, Coordinator, Agricultural Economic Development Program, Palm Beach County Cooperative Extension Service, Florida and Caren Mintz, ICF International.

Klosterboer, A. (1997, 1999-2003). Personal Communication. Arlen Klosterboer, retired Extension Agronomist, Texas A&M University and Caren Mintz, ICF International. July 7, 2003.

Kort, J. and R.Turlock (1999). Carbon reservoir and biomass in Canadian prairie shelterbelts. Agroforestry Systems, 44:175-189.

Lachnicht, S.L., P.F. Hendrix, R.L. Potter, D.C. Coleman, and D.A. Crossley Jr. (2004). Winter decomposition of transgenic cotton residue in conventional-till and no-till systems. Applied Soil Ecology, 27:135-142.

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677):1623-1627.

Le Mer, J. and P. Roger (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37(1):25-50.

Lee, D. (2003-2007). Email correspondence. Danny Lee, OK Farm Service Agency and Victoria Thompson, ICF International.

Lindau, C.W. and P.K. Bollich (1993). Methane emissions from Louisiana first and ratoon crop rice. Soil Science, 156:42-48.



Lindau, C.W., P.K. Bollich, and R.D. DeLaune (1995). Effect of rice variety on methane emission from Louisiana rice. Agriculture, Ecosystems and Environment 54:109-114.

Linscombe, S. (1999, 2001- 2014). Email correspondence. Steve Linscombe, Professor with the Rice Research Station at Louisiana State University Agriculture Center and ICF International.

Lugato, E., K. Paustian and L. Giardini (2007). Modeling soil organic carbon dynamics in two long-term experiments of north-eastern Italy. Agriculture, Ecosystem and Environment 120:423-432.

McCarty, J.L. (2009). Seasonal and Interannual Variability of Emissions from Crop Residue Burning in the Contiguous United States. Dissertation. University of Maryland, College Park.

McCarty, J.L. (2010). Agricultural Residue Burning in the Contiguous United States by Crop Type and State. Geographic Information Systems (GIS) Data provided to the EPA Climate Change Division by George Pouliot, Atmospheric Modeling and Analysis Division, EPA.

McTaggart, I.P., H. Clayton, J. Parker, L. Swan, and K.A. Smith (1997.) Nitrous oxide emissions from grassland and spring barley, following nitrogen fertilizer application with and without nitrification inhibitors. Biology and Fertility of Soils 25:261-268.

Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P. C. Shafran, W. Ebisuzaki, D. Jovic, J. Woollen, E. Rogers, E. H. Berbery, M. B. Ek, Y. Fan, R. Grumbine, W. Higgins, H. Li, Y. Lin, G. Manikin, D. Parrish, and W. Shi (2006). North American regional reanalysis. Bulletin of the American Meteorological Society 87:343-360.

Migliorati, M.D.A., W.J. Parton, S.J. Del Grosso, P.R. Grace, M.J. Bell, D.W. Rowlings, C. Scheer. (2015). Legumes or nitrification inhibitors to reduce N<sub>2</sub>O emissions in subtropical cereal cropping systems? A simulation study. Agriculture, Ecosystems and Environment 213:228-240,

Minerals Yearbook (2014). Published by the Bureau of Mines and by the U.S. Geological Survey from 1994-Present. Available online at <http://minerals.usgs.gov/minerals/pubs/myb.html>

Nair, P.K.R. and V.D. Nair (2003). Carbon storage in North American agroforestry systems. Pp. 333-346 in The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. J. Kimble, L.S. Heath, R.A. Birdsey, and R. Lal, editors. CRC Press, Boca Raton, FL.

Nishina, K., Akiyama, H., Nishimura, S., Sudo, S., & Yagi, K. (2012). Evaluation of uncertainties in N<sub>2</sub>O and NO fluxes from agricultural soil using a hierarchical Bayesian model. Journal of Geophysical Research: Biogeosciences, 117(G4).

NRAES (1992). On-Farm Composting Handbook (NRAES-54). Natural Resource, Agriculture, and Engineering Service. Available online at <http://compost.css.cornell.edu/OnFarmHandbook/ onfarm\_TOC.html>.

NRIAI (2003). Regional Budget and Cost Information. United States Department of Agriculture, Natural Resources Conservation Service, Natural Resources Inventory and Analysis Institute. Available online at <http://www.economics.nrcs.usda.gov/care/ budgets/index.html> Nusser S.M., Breidt F.J., Fuller W.A. (1998). Design and estimation for investigating the dynamics of natural resources. Ecological Applications 8, 234–245.

Nusser S.M., Goebel J.J. (1997). The national resources inventory: a long term monitoring programme. Environmental and Ecological Statistics 4, 181–204.

Ogle, S.M., M.D. Eve, F.J. Breidt, and K. Paustian (2003). Uncertainty in estimating land use and management impacts on soil organic carbon storage for U.S. agroecosystems between 1982 and 1997. Global Change Biology 9:1521-1542.

Ogle, S.M., F.J. Breidt, and K. Paustian. (2006b). Bias and variance in model results due to spatial scaling of measurements for parameterization in regional assessments. Global Change Biology 12:516-523.

Ogle, S.M., F.J. Breidt, M. Easter, S.Williams and K. Paustian (2007). An empirically based approach for estimating uncertainty associated with modeling carbon sequestration in soils. Ecological Modeling 205:453-463.

Ogle, S. M., F. J. Breidt, M. Easter, S. Williams, K. Killian, and K. Paustian (2009). Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model, Global Change Biology 16, 810–822.

Ogle, S.M., P.R. Adler, F.J. Breidt, S. Del Grosso, J. Derner, A. Franzluebbers, M. Liebig, B. Linquist, G.P. Robertson, M. Schoeneberger, J. Six, C. van Kessel, R. Venterea, T. West (2014). Chapter 3: Quantifying greenhouse gas sources and sinks in cropland and grazing land systems. In Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory. Technical Bulletin Number 1939, Office of the Chief Economist, United States Department of Agriculture, Washington, DC. 606 pages. Eve, M., D. Pape, M. Flugge, R. Steele, D. Man, M. Riley-Gilbert, and S. Biggar, Eds.

Parkin, Timothy B. and Jerry L. Hatfield (2014). Enhanced efficiency fertilizers: Effect on nitrous oxide emissions in Iowa. Agronomy Journal 106.2: 694-702.

Parton W.J., J.M. Scurlock, D.S. Ojima, T.G. Gilmanov, R.J. Scholes, D.S. Schimel, T. Kirchner, J.C. Menaut, T. Seastedt, E. Garcia Moya, A. Kamnalrut, J.L. Kinyamario (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7: 785-809.

Parton, W.J., D.S. Ojima, C.V. Cole, and D.S. Schimel (1994). A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. Pp. 147-167 in Quantitative modeling of soil forming processes. R.B. Bryant and R.W. Arnold, editors. Soil Sciences Society of America, Madison, WI.

Parton, W.J., M.D. Hartman, D.S. Ojima, and D.S. Schimel (1998). DAYCENT: its land surface submodel: description and testing. Global and Planetary Change 19: 35-48.

Paustian, K., H.P. Collins, and E.A. Paul (1997). Management controls on soil carbon. Pp. 15-49 in Soil organic matter in temperate agroecosystems: long-term experiments in North America. E.A. Paul, K. Paustian, E.T. Elliott, and C.V. Cole, editors. CRC Press, Boca Raton, FL.



Philibert, A., Loyce, C., & Makowski, D. (2012). Quantifying uncertainties in  $N_2O$  emission due to N fertilizer application in cultivated areas. PLoS One, 7(11), e50950.

Sass, R.L., F.M Fisher, P.A. Harcombe, and F.T. Turner (1991a). Mitigation of methane emissions from rice fields: possible adverse effects of incorporated rice straw. Global Biogeochemical Cycles 5:275-287.

Sass, R.L., F.M. Fisher, F.T. Turner, and M.F. Jund (1991b). Methane emissions from rice fields as influenced by solar radiation, temperature, and straw incorporation. Global Biogeochemical Cycles 5:335-350.

Saxton, K.E., W.J. Rawls, J.S. Romberger, and R.I. Papendick (1986). Estimating generalized soil-water characteristics from texture. Soil Sciences Society of America Journal 50:1031-1036.

Schlesinger, W. H. (1986). Changes in soil carbon storage and associated properties with disturbance and recovery. Pp. 194-220 in The changing carbon cycle: a global analysis. J.R. Trabalka and D.E. Reichle, editors. Springer-Verlag, New York, NY.

Schroeder, P. (1994). Carbon storage benefits of agroforestry systems. Agroforestry Systems 27:89-97.

Schueneman, T. (1997, 1999-2001). Personal Communication. Tom Schueneman, Agricultural Extension Agent, Palm Beach County, FL and ICF International.

Schueneman, T. and C. Deren (2002). An overview of the Florida rice industry. Publication SS-AGR-77. Agronomy Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL.

Sistani, K. R., Jn-Baptiste, M., Lovanh, N.C., Cook, K.L. (2011). Atmospheric emissions of nitrous oxide, methane, and carbon dioxide from different nitrogen fertilizers. Journal of Environmental Quality 40.6: 1797-1805.

Slaton, N. (1999-2001) Personal Communication. Nathan Slaton, Extension Agronomist - Rice, University of Arkansas Division of Agriculture Cooperative Extension Service and ICF International

Soil Survey Staff (2011). State Soil Geographic (STATSGO) Database for State. Natural Resources Conservation Service, United States Department of Agriculture. Available online at <http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/index. html>.

Stansel, J. (2004-2005) Email correspondence. Jim Stansel, Resident Director and Professor Emeritus, Texas A&M University Agricultural Research and Extension Center and ICF International.

Stehfest, E., and Bouwman, L. (2006). N<sub>2</sub>O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207-228.

Strehler, A. and W. Stützle (1987). Biomass residues. Pp. 75-102 in Biomass, vol. 4. D.O. Hall and R.P. Overend, editors. John Wiley and Sons, Chichester, UK.

Texas Agricultural Experiment Station (2007-2014). Texas Rice Acreage by Variety. Agricultural Research and Extension Center, Texas Agricultural Experiment Station, Texas A&M University System. Available online at <a href="http://beaumont.tamu.edu/">http://beaumont.tamu.edu/</a> CropSurvey/CropSurveyReport.aspx>.

Texas Agricultural Experiment Station (2005-2006). Texas Rice Crop Statistics Report. Agricultural Research and Extension Center, Texas Agricultural Experiment Station, Texas A&M University System, p. 8. Available online at <http://beaumont. tamu.edu/eLibrary/TRRFReport default.htm>

Towery, D. (2001). Personal Communication. Dan Towery regarding adjustments to the CTIC (1998) tillage data to reflect long-term trends, Conservation Technology Information Center, West Lafayette, IN, and Marlen Eve, National Resource Ecology Laboratory, Fort Collins, CO.

Turn, S.Q., B.M. Jenkins, J.C. Chow, L.C. Pritchett, D. Campbell, T. Cahill, and S.A. Whalen (1997). Elemental characterization of particulate matter emitted from biomass burning: wind tunnel derived source profiles for herbaceous and wood fuels. Journal of Geophysical Research 102(D3):3683-3699.

TVA (1991-1994). Commercial fertilizers 1992. Tennessee Valley Authority, Muscle Shoals, AL.

USDA (1994). Field crops: final estimates, 1987-1992. Statistical bulletin number 896. National Agriculture Statistics Service, United States Department of Agriculture, Government Printing Office, Washington, D.C. Available online at <a href="http://usda.mannlib.cornell.edu/data-sets/crops/94896/sb896.txt">http://usda.mannlib.cornell.edu/data-sets/crops/94896/sb896.txt</a>.

USDA (1996). Agricultural Waste Management Field Handbook, National Engineering Handbook (NEH), Part 651. Natural Resources Conservation Service, United States Department of Agriculture.

USDA (1997a). Cropping practices survey data 1995. Economic Research Service, United States Department of Agriculture. Available online at <a href="http://www.ers.usda.gov/data/archive/93018/">http://www.ers.usda.gov/data/archive/93018/</a>>.

USDA (1997b). National soil survey laboratory characterization data, digital data. United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

USDA (1998). Field Crops Final Estimates 1992-1997. Statistical Bulletin Number 947a. National Agricultural Statistics Service, United States Department of Agriculture. Washington, DC. Available online at <a href="http://usda.mannlib.cornell.edu">http://usda.mannlib.cornell.edu</a>.

USDA (1999). Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd Edition. Agricultural Handbook Number 436, Natural Resources Conservation Service, United States Department of Agriculture. Washington, DC.

USDA (2000). 1997 National Resources Inventory. United States Department of Agriculture, Natural Resources Conservation Service. Washington, D.C. Available online at <a href="http://www.nrcs.usda.gov/technical/NRI/>">http://www.nrcs.usda.gov/technical/NRI/></a>.

USDA (2003). Field Crops Final Estimates 1998-2002. Statistical Bulletin Number 982. National Agricultural Statistics Service, United States Department of Agriculture. Washington, DC. Available online at <a href="http://usda.mannlib.cornell.edu">http://usda.mannlib.cornell.edu</a>.



USDA (2005-2014). Crop Production Summary. National Agricultural Statistics Service, Agricultural Statistics Board, United States Department of Agriculture. Washington, D.C. Available online at <a href="http://usda.mannlib.cornell.edu">http://usda.mannlib.cornell.edu</a>

USDA (2009). Summary Report: 2007 National Resources Inventory, Natural Resources Conservation Service, Washington, D.C, and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa. Available online at <a href="http://www.nrcs.usda.gov/technical/NRI/2007/2007\_NRI\_Summary.pdf">http://www.nrcs.usda.gov/technical/NRI/2007/2007\_NRI\_Summary.pdf</a>>.

USDA (2011a). U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2008. Del Grosso, S.J. and M.K. Walsh (Eds.) Technical bulletin 1930. Office of the Chief Economist, United States Department of Agriculture. Washington, D.C. Available online at <a href="http://www.usda.gov/oce/climate\_change/AFGG\_Inventory/USDA\_GHG\_Inv\_1990-2008\_June2011.pdf">http://www.usda.gov/oce/climate\_change/AFGG\_Inventory/USDA\_GHG\_Inv\_1990-2008\_June2011.pdf</a>

USDA (2011b). Agricultural Resource Management Survey. Economic Research Service, United States Department of Agriculture. Available online at <a href="http://www.ers.usda.gov/">http://www.ers.usda.gov/</a>>.

USDA (2013). Summary Report: 2010 National Resources Inventory. Natural Resources Conservation Service, Washington, D.C, and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa. Available online at <a href="http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/stelprdb1167354.pdf">http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/stelprdb1167354.pdf</a>

USDA (2014). Agricultural Statistics. National Agricultural Statistics Service, United States Department of Agriculture. Available online at <a href="http://www.nass.usda.gov/Publications/Ag\_Statistics/index.asp">http://www.nass.usda.gov/Publications/Ag\_Statistics/index.asp</a> and <a href="http://www.nass.usda.gov/Data\_and\_Statistics/Quick\_Stats/>">http://www.nass.usda.gov/Publications/Ag\_Statistics/index.asp</a> and <a href="http://www.nass.usda.gov/Data\_and\_Statistics/Quick\_Stats/>">http://www.nass.usda.gov/Publications/Ag\_Statistics/Quick\_Stats/></a>.

USDA (2014). Conservation Reserve Program Monthly Summary – September 2014. Farm Service Agency, United States Department of Agriculture. Washington, DC. Available online at <https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/ Conservation/PDF/summarysept2014.pdf>

Weiske, A., G. Benckiser, T. Herbert, and G. Ottow (2001). Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during three years of repeated application in field experiments. Biology and Fertility of Soils 34:109-117.

West, T.O. and A.C. McBride (2005). The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agricultural Ecosystems & Environment 108:145-154.

Wilson, C. (2002-2007, 2009-2012). Personal Communication. Chuck Wilson, Rice Specialist at the University of Arkansas Cooperative Extension Service, ICF International.

## 3.10 Appendix B

B-1 MLRA-Level Area Estimates by Major Crop Rotation, 2003-2007

B-2 MLRA-Level Estimates of Total Annual Direct  $\rm N_2O$  Emissions by Major Crop Rotation, 2003-2007

B-3 MLRA-Level Estimates of Total Annual Indirect  $N_2O$ Emissions from Ammonia, Nitric Oxide and Nitrogen Dioxide Volatilization by Major Crop Rotation, 2003-2007

B-4 MLRA-Level Estimates of Total Annual Indirect  $\rm N_2O$  Emissions for Nitrate Leaching by Major Crop Rotation, 2003-2007

B-5 Rice Harvested Area, 1990, 1995, 2000-2013

B-6 Total U.S. Production of Crops Managed With Burning, 1990, 1995, 2000-2013

B-7 Production of Crops Managed With Burning

B-8 Information Used in Estimating Methane and Nitrous Oxide Emissions from Crop Residue Burning

B-9 Cultivated Histosol (Organic Soils) Area

B-10 Carbon Loss Rates from Organic Soils Under Agricultural Management in the United States

B-11 MLRA-Level Estimates of Annual Soil Carbon Stock Changes by Major Crop Rotation, 2003-2007

B-12 State-Level Estimates of Mineral Soil Carbon Changes on Cropland by Major Activity, 2013





### Appendix Table B-1 MLRA-Level Area Estimates by Major Crop Rotation, 2003-2007

|                   | CRP <sup>1</sup> | Fallow    | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated | Low<br>Residue | Other<br>Cropland | Rice    | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|-----------|--------------|--------------------|---------------|-----------|----------------|-------------------|---------|-------------|----------------|
| MLRA <sup>2</sup> |                  |           |              |                    |               | hectares  |                |                   |         |             |                |
| 2                 | -                | -         | 23,715       | 21,480             | 25,374        | 91,821    | -              | -                 | -       | -           | 189,942        |
| 5                 | -                | -         | -            | -                  | -             | 20,334    | -              | -                 | -       | -           | -              |
| 7                 | 32,780           | 68,351    | -            | -                  | -             | 370,458   | -              | -                 | -       | -           | -              |
| 8                 | 516,582          | 1,187,268 | -            | -                  | -             | 147,229   | -              | 28,449            | -       | -           | 220,109        |
| 9                 | 135,571          | 231,521   | -            | -                  | 29,866        | 48,548    | -              | -                 | -       | -           | 584,542        |
| 10                | -                | 15,781    | -            | -                  | 16,511        | 139,697   | -              | -                 | -       | -           | -              |
| 11                | -                | 44,733    | -            | -                  | -             | 959,877   | -              | -                 | -       | -           | -              |
| 12                | -                | -         | -            | -                  | -             | 95,053    | -              | -                 | -       | -           | -              |
| 13                | 222,575          | 63,126    | -            | 16,026             | 17,442        | 132,510   | -              | -                 | -       | -           | 76,018         |
| 14                | -                | -         | 16,026       | -                  | -             | 63,813    | -              | -                 | -       | -           | -              |
| 15                | -                | -         | -            | -                  | -             | 46,607    | -              | 34,115            | -       | -           | -              |
| 16                | -                | -         | -            | -                  | -             | 34,217    | -              | -                 | -       | -           | -              |
| 17                | -                | 24,079    | -            | -                  | -             | 721,579   | -              | 77,255            | 205,024 | -           | -              |
| 21                | -                | -         | -            | -                  | -             | 174,120   | -              | -                 | -       | -           | -              |
| 23                | -                | -         | -            | -                  | -             | 113,689   | -              | -                 | -       | -           | -              |
| 24                | -                | -         | -            | -                  | -             | 82,208    | -              | -                 | -       | -           | -              |
| 25                | -                | -         | -            | -                  | -             | 42,909    | -              | -                 | -       | -           | -              |
| 26                | -                | -         | -            | -                  | -             | 7,917     | -              | -                 | -       | -           | -              |
| 27                | -                | -         | -            | -                  | -             | 66,271    | -              | 2,266             | -       | -           | -              |
| 29                | -                | -         | -            | -                  | -             | 9,264     | -              | -                 | -       | -           | -              |
| 30                | -                | -         | -            | -                  | -             | 23,254    | -              | -                 | -       | -           | -              |
| 31                | -                | 21,408    | -            | -                  | -             | 179,357   | -              | 10,158            | -       | -           | -              |
| 32                | -                | -         | -            | -                  | -             | 131,672   | -              | -                 | -       | -           | -              |
| 35                | -                | -         | -            | -                  | -             | 35,565    | -              | -                 | -       | -           | -              |
| 36                | 19,830           | 34,317    | -            | -                  | -             | 70,638    | -              | -                 | -       | -           | 19,708         |
| 40                | -                | -         | -            | -                  | -             | 121,208   | -              | 13,152            | -       | -           | -              |
| 41                | -                | -         | -            | -                  | -             | 20,437    | -              | -                 | -       | -           | -              |
| 42                | -                | -         | -            | -                  | -             | 171,981   | -              | 52,569            | -       | -           | -              |
| 44                | -                | 112,083   | 7,608        | -                  | 49,412        | 361,826   | -              | -                 | -       | -           | 37,879         |
| 46                | 70,092           | 269,302   | -            | -                  | 94,292        | 158,441   | -              | -                 | -       | -           | 143,906        |
| 47                | -                | -         | -            | -                  | -             | 67,989    | -              | -                 | -       | -           | -              |
| 49                | -                | 25,778    | -            | -                  | -             | 11,935    | -              | -                 | -       | -           | -              |
| 51                | -                | -         | -            | -                  | -             | 149,262   | -              | -                 | -       | -           | -              |
| 52                | 542,239          | 1,582,282 | -            | -                  | 20,760        | 87,974    | -              | -                 | -       | -           | 295,926        |
| 54                | 244,268          | 193,278   | 131,159      | 106,262            | 264,705       | 42,735    | -              | 34,722            | -       | 110,965     | 1,317,166      |
| 56                | 318,245          | -         | 34,075       | 41,278             | 42,168        | -         | 112,907        | 484,490           | -       | 1,181,429   | 629,530        |
| 57                | -                | -         | -            | 61,269             | 80,087        | -         | -              | -                 | -       | 154,125     | -              |
| 61                | -                | -         | -            | -                  | 20,315        | -         | -              | -                 | -       | -           | -              |
| 64                | 30,311           | 193,480   | -            | -                  | 46,498        | 107,067   | -              | -                 | -       | 35,491      | 56,575         |
| 65                | -                | -         | -            | -                  | 11,938        | 124,481   | -              | -                 | -       | -           | -              |
| 66                | -                | -         | 16,592       | 38,838             | 72,884        | 113,548   | -              | -                 | -       | 99,553      | 32,618         |
| 69                | 150,098          | 58,194    | -            | -                  | -             | 115,950   | -              | -                 | -       | -           | -              |
| 71                | 12,424           | -         | 15,095       | -                  | 50,586        | 683,436   | -              | -                 | -       | 145,606     | -              |
| 72                | 695,557          | 2,113,497 | -            | -                  | 18,494        | 1,074,751 | -              | 369,681           | -       | 381,133     | 551,870        |
| 73                | 288,130          | 959,834   | 20,275       | 67,973             | 91,135        | 356,913   | -              | 458,752           | -       | 493,029     | 865,745        |
| 74                | 82,632           | 18,899    | 21,974       | 41,157             | 47,227        | 56,211    | -              | 28,692            | -       | 326,501     | 577,123        |



### Continued - Appendix Table B-1 MLRA-Level Area Estimates by Major Crop Rotation, 2003-2007

|                   | CRP <sup>1</sup> | Fallow | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated | Low<br>Residue | Other<br>Cropland | Rice    | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|--------------|--------------------|---------------|-----------|----------------|-------------------|---------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |              |                    |               | hectares  |                |                   |         |             |                |
| 75                | 19,263           | 31,727 | -            | -                  | 16,349        | 877,138   | -              | -                 | -       | 479,715     | 69,646         |
| 76                | 13,193           | -      | 56,251       | 20,720             | 19,708        | -         | -              | -                 | -       | 145,197     | 105,623        |
| 79                | 161,385          | 91,945 | -            | -                  | 18,170        | 208,535   | -              | 37,636            | -       | 103,896     | 571,766        |
| 85                | -                | 18,049 | -            | _                  | -             | -         | -              | -                 | -       | 43,625      | 169,760        |
| 89                | -                | -      | -            | 19,263             | 15,257        | 34,398    | -              | -                 | -       | 40,469      | -              |
| 92                | -                | -      | -            | -                  | 12,667        | -         | -              | -                 | -       | -           | -              |
| 96                | -                | -      | 6,232        | _                  | 8,620         | -         | -              | -                 | -       | -           | -              |
| 97                | -                | -      | -            | -                  | 24,322        | 15,124    | -              | -                 | -       | 138,160     | -              |
| 98                | 39,455           | -      | 62,524       | 58,027             | 142,126       | 164,778   | -              | 45,730            | -       | 1,264,292   | 16,875         |
| 99                | 26,588           | -      | -            | 20,286             | 46,417        | -         | 12,141         | 52,043            | -       | 1,268,131   | 10,805         |
| 101               | -                | _      | 79,238       | 140,361            | 201,615       | -         | -              | 50,869            | -       | 249,624     | 18,899         |
| 103               | 108,530          | _      | 21.367       | 55,482             | 68.028        | _         | _              | 19,951            | _       | 5.022.610   | -              |
| 104               | 52,417           | _      | 13.233       | 48,382             | 33.670        | _         | _              | 35,572            | _       | 2.233.534   | _              |
| 105               | 250.318          | _      | 56.089       | 330.595            | 208.413       | 22.619    | _              | 105.583           | -       | 1.409.838   | _              |
| 106               | 136 258          | _      | 55 118       | 34,830             | 43 666        | 88 141    | _              | 15 661            | _       | 1 200 584   | 55 280         |
| 109               | 480.654          | _      | 177.010      | 78 1 32            | 195 140       |           | _              | 15.014            | _       | 1 143 162   |                |
| 110               |                  | _      | 177,010      | 7 972              |               | _         | _              | 9.874             | _       | 1 217 948   | _              |
| 112               | 82 663           | _      | 222 173      | 35 702             | 99.634        | 37 696    | _              | 38 567            | _       | 950 411     | 362 369        |
| 112               | 159 562          |        | 60,460       | 55 740             | 64 183        | 11 614    |                | 17 928            |         | 1 722 294   | 25 576         |
| 121               | 157,502          |        | 114 405      | 35 254             | 156 937       | 11,014    |                | 17,720            |         | 102 335     | 25,570         |
| 121               | 33.076           |        | 170.858      | 52 208             | 190,957       | _         | 23 310         | _                 |         | 102,555     | 23.017         |
| 122               | 55,070           | _      | 37 433       | 52,200             | 46 206        | _         | 25,510         | _                 | -       | 41 235      | 23,717         |
| 123               | -                | -      | 77 092       | 47 097             | 40,290        | -         | -              | 12 15 2           | -       | 162.020     | -              |
| 124               | -                | -      | 26 750       | 47,907             | 17.240        | -         | -              | 15,152            | -       | 21.002      | -              |
| 125               | -                | -      | 192 (0)      | 40.479             | 72 217        | -         | -              | -                 | -       | 21,005      | -              |
| 120               | -                | -      | 165,000      | 40,478             | 72,317        | -         | -              | 10749             | -       | 72,005      | -              |
| 12/               | -                | -      | 95,465       | 46,590             | 54,187        | -         |                | 12,748            | -       | 57,004      | -              |
| 128               | -                | -      | 107,525      | 30,191             | 100,119       | -         | 68,/16         | 13,314            | -       | 116,409     | -              |
| 129               | -                | -      | 21,//2       | -                  | -             | -         | -              | -                 | -       | 42,439      | -              |
| 134               | 231,640          | 26,993 | 113,838      | -                  | -             | 196,075   | 320,269        | 82,961            | 21/,516 | /55,810     | 50,707         |
| 136               | 36,098           | -      | 308,614      | 63,694             | 29,097        | -         | 19,223         | 42,856            | -       | 209,545     | 46,440         |
| 13/               | -                | -      | 22,501       | -                  | -             | -         | 26,386         | 12,626            | -       | 27,216      | -              |
| 138               | -                | -      | -            | -                  | -             | 12,096    | -              | -                 | -       | -           | -              |
| 139               | -                | -      | 53,702       | 83,733             | 156,168       | -         | -              | 26,305            | -       | 369,536     | -              |
| 140               | -                | -      | 243,904      | 165,009            | 236,782       | -         | -              | 24,443            | -       | 142,569     | -              |
| 142               | -                | -      | 84,134       | 62,367             | 140,912       | -         | -              | -                 | -       | 53,336      | -              |
| 143               | -                | -      | 34,520       | -                  | 20,639        | -         | -              | -                 | -       | -           | -              |
| 145               | -                | -      | 15,459       | -                  | -             | -         | -              | -                 | -       | 13,993      | -              |
| 146               | -                | -      | -            | -                  | -             | -         | 19,546         | -                 | -       | -           | -              |
| 147               | -                | -      | 161,672      | 131,700            | 119,585       | -         | -              | 40,307            | -       | 353,730     | 21,570         |
| 148               | -                | -      | 83,163       | 86,885             | 77,133        | -         | -              | 34,277            | -       | 302,066     | 21,655         |
| 155               | -                | -      | -            | -                  | -             | 110,784   | -              | -                 | -       | -           | -              |
| 102A              | 231,606          | -      | 41,318       | 71,225             | 94,575        | 50,748    | -              | 54,268            | -       | 1,880,376   | 135,813        |
| 102B              | -                | -      | -            | -                  | 23,674        | -         | -              | -                 | -       | 373,886     | -              |
| 102C              | 88,339           | -      | 23,593       | 60,662             | 71,994        | 507,355   | -              | -                 | -       | 1,359,543   | -              |
| 107A              | -                | -      | -            | -                  | -             | -         | -              | 15,014            | -       | 926,590     | -              |
| 107B              | 86,927           | -      | 52,650       | 26,752             | 40,307        | 109,994   | -              | -                 | -       | 2,213,355   | 14,261         |
| 108A              | -                | -      |              | -                  | 14,528        | -         | -              | -                 | -       | 1,916,475   | -              |



## Continued - Appendix Table B-1 MLRA-Level Area Estimates by Major Crop Rotation, 2003-2007

|                   | CRP <sup>1</sup> | Fallow | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated | Low<br>Residue | Other<br>Cropland | Rice    | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|--------------|--------------------|---------------|-----------|----------------|-------------------|---------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |              |                    |               | hectares  |                |                   |         |             |                |
| 108B              | 16,514           | -      | -            | -                  | 26,628        | 27,715    | -              | -                 | -       | 1,904,706   | _              |
| 108C              | 118,856          | -      | 19,830       | 37,960             | 30,392        | -         | -              | 28,045            | -       | 1,177,787   | -              |
| 108D              | 111,469          | -      | 21,813       | 44,973             | 66,692        | -         | -              | -                 | -       | 683,944     | -              |
| 111A              | -                | -      | 15,459       | -                  | 32,011        | -         | -              | -                 | -       | 1,610,775   | -              |
| 111B              | 100,628          | -      | 17,806       | 40,745             | 67,947        | 9,712     | -              | 17,604            | -       | 1,904,787   | 12,383         |
| 111C              | -                | -      | -            | -                  | -             | -         | -              | -                 | -       | 575,028     | -              |
| 111D              | -                | -      | -            | -                  | 11,979        | -         | -              | -                 | -       | 828,783     | -              |
| 111E              | -                | -      | -            | 16,147             | 16,633        | -         | -              | 9,348             | -       | 339,457     | -              |
| 114A              | -                | -      | 23,148       | 15,321             | 34,075        | -         | -              | -                 | -       | 384,282     | -              |
| 114B              | 21,246           | -      | 15,216       | 27,999             | 19,546        | -         | -              | -                 | -       | 812,550     | 16,592         |
| 115A              | -                | -      | -            | -                  | 14,973        | 17,968    | -              | -                 | -       | 627,496     | 24,888         |
| 115B              | 22,743           | -      | 64,143       | -                  | 30,999        | -         | -              | 20,639            | -       | 375,613     | 16,552         |
| 115C              | 97,497           | -      | 48,805       | 44,070             | 66,045        | 61,431    | -              | 22,986            | -       | 1,545,842   | -              |
| 116A              | -                | -      | 178,426      | -                  | 65,802        | -         | -              | -                 | -       | 83,047      | -              |
| 116B              | -                | -      | 104,854      | -                  | 29,380        | -         | -              | -                 | -       | 22,161      | 15,621         |
| 118A              | -                | -      | 14,285       | -                  | -             | -         | -              | -                 | -       | 21,974      | 27,814         |
| 120A              | 80,472           | -      | 37,110       | 27,511             | 68,554        | -         | -              | -                 | -       | 385,636     | -              |
| 120B              | -                | -      | 13,112       | -                  | -             | -         | -              | -                 | -       | 97,961      | -              |
| 120C              | -                | -      | -            | -                  | -             | -         | -              | -                 | -       | 19,061      | -              |
| 130A              | -                | -      | -            | -                  | -             | -         | -              | -                 | -       | 5,382       | -              |
| 130B              | -                | -      | 25,131       | -                  | 22,541        | -         | -              | -                 | -       | -           | -              |
| 131A              | 68,554           | 49,169 | 17,685       | -                  | -             | 1,118,667 | 532,162        | 122,660           | 722,280 | 1,316,008   | 81,301         |
| 131B              | -                | 20,315 | -            | -                  | -             | 306,643   | 27,761         | -                 | 205,338 | 60,946      | -              |
| 131C              | -                | -      | -            | -                  | -             | 25,455    | 31,039         | -                 | 30,149  | 115,740     | -              |
| 131D              | -                | -      | -            | -                  | -             | 94,697    | -              | -                 | 158,354 | -           | -              |
| 133A              | 376,047          | 74,278 | 180,895      | 58,728             | 16,997        | 301,787   | 880,685        | 216,467           | -       | 536,764     | 81,423         |
| 133B              | -                | -      | 46,134       | -                  | -             | -         | -              | -                 | -       | 47,429      | 20,826         |
| 135A              | 145,627          | -      | 60,784       | -                  | -             | -         | 70,780         | 10,360            | -       | 149,410     | -              |
| 144A              | -                | -      | 118,533      | 40,647             | 61,108        | -         | 6,596          | 9,955             | -       | 49,940      | -              |
| 144B              | -                | -      | 92,997       | 10,687             | 32,253        | -         | -              | -                 | -       | 13,476      | -              |
| 149A              | -                | -      | 7,608        | -                  | -             | 14,812    | -              | -                 | -       | 74,336      | -              |
| 150A              | -                | -      | -            | -                  | -             | 242,060   | 173,408        | 258,554           | 280,439 | 319,500     | -              |
| 150B              | -                | -      | -            | -                  | -             | -         | -              | -                 | 10,279  | -           | -              |
| 152B              | -                | -      | -            | -                  | -             | -         | -              | 20,922            | 16,673  | -           | -              |
| 153A              | -                | -      | -            | -                  | -             | 18,345    | 133,936        | 34,924            | -       | 181,828     | -              |
| 153B              | -                | -      | -            | -                  | -             | 8,158     | 35,208         | 11,048            | -       | 139,549     | 5,666          |
| 153C              | -                | -      | -            | -                  | -             | 11,007    | -              | -                 | -       | 165,759     | -              |
| 153D              | -                | -      | -            | -                  | -             | 44,904    | -              | -                 | -       | 122,932     | -              |
| 156A              | -                | -      | -            | -                  | -             | 23,512    | -              | -                 | -       | -           | -              |
| 28A               | 93,685           | 42,613 | -            | -                  | -             | 391,900   | -              | -                 | -       | -           | 15,174         |
| 28B               | -                | -      | -            | -                  | -             | 15,083    | -              | -                 | -       | -           | -              |
| 34A               | -                | 15,580 | -            | -                  | -             | 193,445   | -              | -                 | -       | -           | -              |
| 34B               | -                | -      | -            | -                  | -             | 128,932   | -              | -                 | -       | -           | -              |
| 43A               | 26,871           | -      | -            | -                  | 16,754        | -         | -              | -                 | -       | -           | 72,803         |
| 43B               | 30,473           | -      | -            | -                  | 24,848        | 100,708   | -              | -                 | -       | -           | -              |
| 48A               | -                | -      | -            | -                  | -             | 65,288    | -              | -                 | -       | -           | -              |
| 48B               | -                | -      |              | -                  | -             | 24,442    | -              | -                 | -       | -           | -              |



### Continued - Appendix Table B-1 MLRA-Level Area Estimates by Major Crop Rotation, 2003-2007

|                   | CRP <sup>1</sup> | Fallow  | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated | Low<br>Residue | Other<br>Cropland | Rice | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|---------|--------------|--------------------|---------------|-----------|----------------|-------------------|------|-------------|----------------|
| MLRA <sup>2</sup> |                  |         |              |                    |               | hectares  |                |                   |      |             |                |
| 53A               | 299,063          | 297,727 | 17,563       | -                  | 16,754        | 15,459    | -              | 54,956            | -    | -           | 742,396        |
| 53B               | 412,172          | 106,999 | 74,017       | 83,350             | 115,133       | -         | -              | 107,646           | -    | 604,601     | 1,199,004      |
| 53C               | 19,627           | -       | -            | -                  | 15,297        | 16,552    | -              | -                 | -    | 205,742     | 172,801        |
| 55A               | 250,501          | -       | 25,333       | -                  | 19,668        | -         | 26,628         | 176,484           | -    | 128,488     | 1,502,113      |
| 55B               | 378,783          | -       | 57,465       | 71,920             | 63,495        | 31,889    | 21,610         | 219,664           | -    | 1,458,407   | 666,545        |
| 55C               | 57,101           | -       | 21,772       | 64,426             | 103,316       | 46,370    | -              | 47,955            | -    | 1,178,071   | 75,312         |
| 58A               | 360,171          | 488,335 | 85,389       | 123,762            | 164,667       | 171,904   | -              | 60,339            | -    | -           | 191,174        |
| 58B               | -                | -       | -            | -                  | 15,540        | 56,996    | -              | -                 | -    | -           | -              |
| 60A               | -                | 61,147  | -            | -                  | 38,728        | 27,761    | -              | -                 | -    | -           | 53,540         |
| 63A               | 66,166           | 62,160  | 29,259       | -                  | 20,518        | -         | -              | -                 | -    | 89,274      | 241,719        |
| 63B               | -                | -       | 9,105        | 16,511             | 53,661        | -         | -              | 17,847            | -    | 89,881      | 39,700         |
| 67A               | 141,964          | 89,593  | -            | -                  | 17,037        | 235,975   | -              | -                 | -    | 11,048      | 17,078         |
| 67B               | 578,903          | 873,526 | -            | -                  | -             | 302,986   | -              | 81,544            | -    | 195,221     | 122,863        |
| 70A               | -                | -       | -            | -                  | -             | 10,141    | -              | -                 | -    | -           | -              |
| 70B               | -                | -       | -            | -                  | -             | 30,311    | -              | -                 | -    | -           | -              |
| 70C               | -                | -       | -            | -                  | -             | 7,163     | -              | -                 | -    | -           | -              |
| 77A               | 226,988          | 120,354 | -            | -                  | -             | 498,043   | -              | 21,610            | -    | 113,393     | 392,019        |
| 77B               | 23,472           | -       | -            | -                  | -             | 128,680   | -              | -                 | -    | -           | -              |
| 77C               | 1,121,627        | 137,985 | -            | -                  | -             | 1,353,623 | 810,106        | 49,776            | -    | 57,749      | 463,285        |
| 77D               | 163,898          | -       | -            | -                  | -             | 62,259    | -              | -                 | -    | -           | 35,929         |
| 77E               | 229,295          | 25,171  | -            | -                  | -             | 36,870    | -              | -                 | -    | -           | 114,966        |
| 78A               | -                | -       | -            | -                  | -             | -         | -              | -                 | -    | -           | 119,802        |
| 78B               | 302,019          | -       | -            | -                  | -             | 52,189    | 289,818        | -                 | -    | -           | 407,644        |
| 78C               | 195,359          | 37,231  | -            | -                  | 20,679        | 103,737   | 184,438        | 31,768            | -    | 18,696      | 1,203,236      |
| 80A               | 36,058           | -       | 25,900       | -                  | 65,519        | 56,101    | -              | -                 | -    | 38,000      | 1,711,492      |
| 80B               | -                | -       | -            | -                  | -             | -         | -              | -                 | -    | -           | 121,120        |
| 81A               | -                | -       | -            | -                  | -             | 89,193    | 51,759         | 69,201            | -    | -           | 36,426         |
| 81B               | -                | -       | -            | -                  | -             | -         | -              | -                 | -    | -           | 40,766         |
| 81C               | -                | -       | -            | -                  | -             | -         | -              | -                 | -    | -           | 26,669         |
| 82B               | -                | -       | -            | -                  | -             | -         | -              | -                 | -    | -           | 37,396         |
| 83A               | -                | -       | -            | -                  | -             | 87,203    | -              | 17,280            | -    | 97,853      | 69,140         |
| 83C               | -                | -       | -            | -                  | -             | -         | -              | -                 | -    | 23,836      | -              |
| 83D               | -                | -       | -            | -                  | -             | 167,773   | 43,504         | -                 | -    | 129,095     | -              |
| 83E               | -                | -       | -            | -                  | -             | -         | -              | -                 | -    | 39,295      | -              |
| 84A               | -                | -       | 25,252       | -                  | -             | -         | -              | -                 | -    | -           | 74,299         |
| 84B               | -                | -       | -            | -                  | -             | 32,495    | -              | -                 | -    | -           | 91,358         |
| 86A               | -                | -       | 24,403       | -                  | -             | -         | 32,577         | 76,769            | -    | 411,602     | 323,225        |
| 87A               | -                | -       | -            | -                  | -             | -         | -              | -                 | -    | 55,887      | 22,674         |
| 87B               | -                | -       | -            | -                  | -             | -         | -              | -                 | -    | -           | 32,529         |
| 90A               | -                | -       | 67,218       | 107,074            | 114,202       | -         | -              | -                 | -    | 129,816     | -              |
| 90B               | 13,881           | -       | 51,719       | 158,888            | 95,304        | -         | -              | 41,723            | -    | 351,542     | -              |
| 91A               | 44,371           | -       | -            | 23,259             | 35,734        | 91,861    | -              | -                 | -    | 120,634     | -              |
| 91B               | -                | -       | -            | -                  | 13,152        | -         | -              | -                 | -    | 38,526      | -              |
| 94A               | -                | -       | -            | -                  | 67,987        | -         | -              | -                 | -    | 55,578      | -              |
| 94B               | -                | -       | -            | -                  | 25,212        | -         | -              | -                 | -    | -           | -              |
| 95A               | 29,137           | -       | 15,864       | 163,384            | 75,514        | -         | -              | 37,717            | -    | 353,169     | 12,060         |
| 95B               | 37,838           | -       | 21,125       | 141,795            | 73,936        | 23,876    | -              | 45,122            | -    | 959,343     | -              |

<sup>1</sup> CRP = Conservation Reserve Program <sup>2</sup> MLRA = Major Land Resource Area



### Appendix Table B-2 MLRA-Level Estimates of Total Annual Direct N<sub>2</sub>O Emissions by Major Crop Rotation, 2003-2007

|                   | CRP <sup>1</sup> | Fallow | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated               | Low<br>Residue | Other<br>Cropland | Rice   | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|--------------|--------------------|---------------|-------------------------|----------------|-------------------|--------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |              |                    |               | Gg CO2 eq. <sup>3</sup> |                |                   |        |             |                |
| 2                 | -                | -      | 34.28        | 26.08              | 22.21         | 78.26                   | -              | -                 | _      | -           | 140.14         |
| 5                 | -                | -      | -            | -                  | _             | 25.13                   | -              | -                 | -      | -           | -              |
| 7                 | 7.09             | 29.75  | _            | _                  | _             | 304.47                  | _              | _                 | _      | _           | _              |
| 8                 | 111.01           | 482.06 | -            | _                  | _             | 167.32                  | _              | 15.61             | _      | _           | 112.93         |
| 9                 | 40.84            | 124.56 | _            | _                  | 27.31         | 55.69                   | _              | _                 | -      | _           | 448.83         |
| 10                | -                | 10.55  | _            | _                  | 16.82         | 159.65                  | _              | _                 | _      | _           | _              |
| 11                | _                | 30.61  | _            | _                  | -             | 963.09                  | _              | _                 | _      | _           | _              |
| 12                | _                | 50.01  | _            | _                  | _             | 94.63                   |                |                   | _      |             | _              |
| 12                | 63 71            | 36.20  |              | 11.83              | 11.54         | 150.35                  |                |                   |        |             | 71 76          |
| 1.5               | 05.71            | 50.27  | 11.01        | 11.05              | 11.54         | 32 47                   |                | _                 | -      | _           | /1./0          |
| 14                | -                | -      | 11.91        | -                  | -             | 22.47                   | -              | 0 5 2             | -      | -           | _              |
| 15                | -                | -      | -            | -                  | -             | 22.04                   | -              | 0.52              | -      | _           | -              |
| 10                | -                | -      | -            | -                  | -             | 27.38                   | -              |                   | -      | -           | -              |
| 1/                | -                | 26.57  | -            | -                  | -             | 759.82                  | -              | 21.08             | 623.93 | -           | -              |
| 21                | -                | -      | -            | -                  | -             | 204.76                  | -              | -                 | -      | -           | -              |
| 23                | -                | -      | -            | -                  | -             | 103./1                  | -              | -                 | -      | -           | -              |
| 24                | -                | -      | -            | -                  | -             | 67.19                   | -              | -                 | -      | -           | -              |
| 25                | -                | -      | -            | -                  | -             | 54.51                   | -              | -                 | -      | -           | -              |
| 26                | -                | -      | -            | -                  | -             | 10.59                   | -              | -                 | -      | -           | -              |
| 27                | -                | -      | -            | -                  | -             | 51.26                   | -              | 0.67              | -      | -           | -              |
| 29                | -                | -      | -            | -                  | -             | 5.04                    | -              | -                 | -      | -           | -              |
| 30                | -                | -      | -            | -                  | -             | 13.46                   | -              | -                 | -      | -           | -              |
| 31                | -                | 15.86  | -            | -                  | -             | 277.41                  | -              | 4.97              | -      | -           | -              |
| 32                | -                | -      | -            | -                  | -             | 98.71                   | -              | -                 | -      | -           | -              |
| 35                | -                | -      | -            | -                  | -             | 33.96                   | -              | -                 | -      | -           | -              |
| 36                | 5.21             | 16.35  | -            | -                  | -             | 67.88                   | -              | -                 | -      | -           | 7.99           |
| 40                | -                | -      | -            | -                  | -             | 106.61                  | -              | 5.96              | -      | -           | -              |
| 41                | -                | -      | -            | -                  | -             | 22.90                   | -              | -                 | -      | -           | -              |
| 42                | -                | -      | -            | -                  | -             | 159.16                  | -              | 25.78             | -      | -           | -              |
| 44                | -                | 63.09  | 12.04        | -                  | 49.57         | 402.75                  | -              | -                 | -      | -           | 33.74          |
| 46                | 8.90             | 99.43  | -            | -                  | 45.33         | 123.50                  | -              | -                 | -      | -           | 72.69          |
| 47                | -                | -      | -            | -                  | _             | 63.70                   | -              | -                 | -      | -           | -              |
| 49                | -                | 7.49   | _            | _                  | _             | 11.06                   | _              | _                 | _      | _           | _              |
| 51                | -                | _      | -            | _                  | _             | 130.99                  | _              | _                 | _      | _           | _              |
| 52                | 64.40            | 420.76 | _            | _                  | 6.70          | 73.58                   | _              | _                 | -      | _           | 94.43          |
| 54                | 25.78            | 57.71  | 59.20        | 32.64              | 63.65         | 31.47                   | _              | 14.39             | _      | 70.42       | 521.07         |
| 56                | 58.36            |        | 20.37        | 37.41              | 20.84         | _                       | 82 47          | 331.07            | _      | 923.89      | 400.35         |
| 57                | 50.50            | _      | 20.57        | 38.17              | 45.24         | _                       | 02.17          |                   | _      | 110 30      | 100.55         |
| 61                |                  | -      |              | 50.17              | 7.45          | _                       | -              | _                 |        | 117.57      |                |
| 64                | 2 37             | 55 70  | -            | -                  | 13.86         | 81.20                   | -              | -                 | -      | 10.04       | 10.71          |
| 65                | 2.37             | 55.79  | -            | -                  | 2 15          | 102.41                  | -              | -                 | -      | 19.94       | 19./1          |
| 05                | -                | -      | 14.20        | 22.24              | 25.00         | 02.24                   | -              | -                 | -      | 02.20       | 10.25          |
| 00                | -                | 20.45  | 14.36        | 25.24              | 25.86         | 95.54                   | -              | -                 | -      | 92.20       | 18.35          |
| 69                | 24.40            | 52.45  | 45.00        | -                  | 45 55         | 134./9                  | -              | -                 | -      | -           | -              |
| /1                | 2.15             | -      | 15.90        | -                  | 15./5         | 659.43                  | -              | -                 | -      | 128.31      | -              |
| /2                | 117.05           | /44.00 | -            | -                  | 4.11          | 984.92                  | -              | 154.54            | -      | 268.80      | 197.26         |
| 73                | 39.33            | 326.59 | 17.19        | 41.28              | 23.84         | 346.89                  | -              | 182.38            | -      | 275.36      | 344.05         |



|                   | CRP <sup>1</sup> | Fallow | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated       | Low<br>Residue | Other<br>Cropland | Rice   | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|--------------|--------------------|---------------|-----------------|----------------|-------------------|--------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |              |                    | 1             | $Gg CO_2 eq.^3$ |                |                   |        |             |                |
| 74                | 19.79            | 6.80   | 28.62        | 26.34              | 18.19         | 37.57           | -              | 11.73             | -      | 197.40      | 288.44         |
| 75                | 3.98             | 18.26  | -            | -                  | 6.06          | 821.47          | -              | -                 | -      | 365.71      | 41.01          |
| 76                | 3.19             | -      | 67.69        | 19.00              | 8.33          | -               | -              | -                 | -      | 102.74      | 58.03          |
| 79                | 21.66            | 29.22  | -            | -                  | 4.98          | 133.57          | -              | 15.03             | -      | 56.69       | 216.01         |
| 85                | -                | 8.50   | -            | -                  | -             | -               | -              | -                 | -      | 46.49       | 100.41         |
| 89                | -                | -      | -            | 16.46              | 11.23         | 28.79           | -              | -                 | -      | 36.52       | -              |
| 92                | -                | -      | -            | -                  | 13.07         | -               | -              | -                 | -      | -           | -              |
| 96                | -                | -      | 8.89         | -                  | 9.11          | -               | -              | -                 | -      | -           | -              |
| 97                | -                | -      | -            | -                  | 22.76         | 14.94           | -              | -                 | -      | 152.68      | -              |
| 98                | 12.74            | -      | 74.90        | 56.73              | 128.06        | 154.18          | -              | 33.93             | -      | 1,190.01    | 14.66          |
| 99                | 8.05             | -      | -            | 16.40              | 37.86         | -               | 12.77          | 42.56             | -      | 1,199.86    | 9.53           |
| 101               | -                | -      | 127.69       | 195.30             | 220.33        | -               | -              | 58.03             | -      | 366.69      | 22.19          |
| 103               | 27.08            | -      | 16.25        | 42.79              | 41.78         | -               | -              | 16.12             | -      | 4,494.84    | -              |
| 104               | 14.42            | -      | 11.94        | 40.73              | 25.28         | -               | -              | 33.48             | -      | 2,221.85    | -              |
| 105               | 78.41            | -      | 54.58        | 289.00             | 156.02        | 22.63           | -              | 97.11             | -      | 1,462.65    | -              |
| 106               | 32.31            | -      | 40.70        | 21.92              | 24.45         | 78.69           | -              | 8.86              | -      | 1,005.43    | 38.23          |
| 109               | 131.20           | -      | 137.93       | 60.31              | 133.51        | -               | -              | 11.04             | -      | 994.19      | -              |
| 110               | -                | -      | -            | 7.26               | -             | -               | -              | 6.74              | -      | 1,303.22    | -              |
| 112               | 19.81            | -      | 144.26       | 25.57              | 67.21         | 29.02           | -              | 25.18             | -      | 707.90      | 223.41         |
| 113               | 42.24            | -      | 45.85        | 41.75              | 49.40         | 11.44           | -              | 12.92             | -      | 1,416.53    | 17.98          |
| 121               | -                | -      | 100.79       | 32.27              | 149.06        | -               | _              | -                 | -      | 94.45       | -              |
| 122               | 8.86             | -      | 111.56       | 34.03              | 152.57        | -               | 12.22          | -                 | -      | 326.93      | 16.15          |
| 123               | -                | -      | 22.87        | -                  | 32.37         | -               | -              | _                 | -      | 26.13       | -              |
| 124               | -                | -      | 72.46        | 50.06              | 96.91         | -               | -              | 12.92             | -      | 176.59      | -              |
| 125               | -                | -      | 16.30        | -                  | 12.56         | -               | -              | _                 | -      | 14.14       | -              |
| 126               | -                | -      | 155.09       | 37.61              | 69.71         | -               | -              | -                 | -      | 77.60       | -              |
| 127               | -                | -      | 109.92       | 53.21              | 58.89         | -               | -              | 15.28             | -      | 79.38       | -              |
| 128               | -                | -      | 63.81        | 19.86              | 77.98         | -               | 35.65          | 4.29              | -      | 72.44       | -              |
| 129               | -                | -      | 9.70         | -                  | -             | -               | -              | -                 | -      | 23.55       | -              |
| 134               | 44.73            | 12.74  | 67.03        | -                  | -             | 128.30          | 177.00         | 36.58             | 391.30 | 449.92      | 32.12          |
| 136               | 6.95             | -      | 230.41       | 37.87              | 16.52         | -               | 9.05           | 15.20             | -      | 133.18      | 24.56          |
| 137               | -                | -      | 12.80        | -                  | -             | -               | 11.50          | 3.42              | -      | 13.90       | -              |
| 138               | -                | -      | -            | -                  | -             | 5.43            | -              | -                 | -      | -           | -              |
| 139               | -                | -      | 101.13       | 102.47             | 168.49        | -               | -              | 23.22             | -      | 417.03      | -              |
| 140               | -                | -      | 653.17       | 343.96             | 304.35        | -               | -              | 39.81             | -      | 259.51      | -              |
| 142               | -                | -      | 323.98       | 163.95             | 236.50        | -               | -              | -                 | -      | 134.96      | -              |
| 143               | -                | -      | 113.19       | -                  | 29.51         | -               | -              | -                 | -      | -           | -              |
| 145               | -                | -      | 43.81        | -                  | -             | -               | -              | -                 | -      | 21.79       | -              |
| 146               | -                | -      | -            | -                  | -             | -               | 25.40          | -                 | -      | -           | -              |
| 147               | -                | -      | 270.67       | 175.96             | 119.70        | -               | -              | 49.14             | -      | 474.71      | 24.30          |
| 148               | -                | -      | 121.08       | 95.64              | 71.58         | -               | -              | 37.57             | -      | 332.97      | 22.10          |
| 155               | -                | -      | -            | -                  | -             | 48.92           | -              | _                 | -      | -           | -              |
| 102A              | 38.93            | -      | 28.37        | 40.04              | 41.29         | 37.13           | -              | 29.27             | -      | 1,396.38    | 76.37          |
| 102B              | -                | -      | -            | -                  | 11.19         | -               | -              | _                 | -      | 298.10      | -              |
| 102C              | 17.56            | -      | 14.82        | 40.57              | 35.49         | 479.53          | -              | _                 | -      | 1,173.53    | -              |
| 107A              | -                | -      | -            | -                  | _             | -               | -              | 14.29             | -      | 1,077.88    | -              |
| 107B              | 21.96            | -      | 35.20        | 18.50              | 24.13         | 162.56          | -              | _                 | -      | 2,016.77    | 11.97          |

# Continued - Appendix Table B-2 MLRA-Level Estimates of Total Annual Direct N<sub>2</sub>O Emissions by Major Crop Rotation, 2003-2007



# Continued - Appendix Table B-2 MLRA-Level Estimates of Total Annual Direct N<sub>2</sub>O Emissions by Major Crop Rotation, 2003-2007

| _                 | CRP <sup>1</sup> | Fallow | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated       | Low<br>Residue | Other<br>Cropland | Rice     | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|--------------|--------------------|---------------|-----------------|----------------|-------------------|----------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |              |                    |               | $Gg CO_2 eq.^3$ |                |                   |          |             |                |
| 108A              | -                | -      | -            | -                  | 10.82         | -               | -              | -                 | -        | 1,926.14    | -              |
| 108B              | 6.05             | -      | -            | -                  | 19.34         | 28.08           | -              | -                 | -        | 1,925.11    | -              |
| 108C              | 34.32            | -      | 17.90        | 31.59              | 23.02         | -               | -              | 26.37             | -        | 1,183.03    | -              |
| 108D              | 29.43            | -      | 15.66        | 36.55              | 44.32         | -               | -              | -                 | -        | 647.46      | -              |
| 111A              | -                | -      | 10.95        | -                  | 25.44         | -               | -              | -                 | -        | 1,502.43    | -              |
| 111B              | 32.75            | -      | 16.34        | 34.62              | 55.64         | 9.37            | -              | 12.96             | -        | 1,813.91    | 11.44          |
| 111C              | -                | -      | -            | -                  | -             | -               | -              | -                 | -        | 539.66      | -              |
| 111D              | -                | -      | -            | -                  | 9.44          | -               | -              | -                 | -        | 788.44      | -              |
| 111E              | -                | -      | -            | 13.82              | 13.57         | -               | -              | 6.53              | -        | 328.99      | -              |
| 114A              | -                | -      | 19.48        | 13.26              | 29.14         | -               | -              | -                 | -        | 353.10      | -              |
| 114B              | 5.75             | -      | 12.02        | 25.19              | 16.75         | -               | -              | -                 | -        | 719.42      | 12.85          |
| 115A              | -                | -      | -            | -                  | 12.07         | 14.52           | -              | -                 | -        | 551.41      | 19.04          |
| 115B              | 6.25             | -      | 44.61        | -                  | 24.00         | -               | -              | 16.07             | -        | 333.44      | 12.66          |
| 115C              | 28.59            | -      | 36.45        | 35.42              | 50.20         | 54.60           | -              | 18.81             | -        | 1,470.60    | -              |
| 116A              | -                | -      | 135.18       | -                  | 55.01         | -               | -              | -                 | -        | 73.06       | -              |
| 116B              | -                | -      | 75.59        | -                  | 24.20         | -               | -              | -                 | -        | 17.34       | 11.46          |
| 118A              | -                | -      | 7.91         | -                  | -             | -               | -              | -                 | -        | 12.53       | 12.77          |
| 120A              | 25.44            | -      | 28.70        | 18.84              | 57.00         | -               | -              | -                 | -        | 333.39      | -              |
| 120B              | -                | -      | 11.10        | -                  | -             | -               | -              | -                 | -        | 95.81       | -              |
| 120C              | -                | -      | -            | -                  | -             | -               | -              | -                 | -        | 18.60       | -              |
| 130A              | -                | -      | -            | -                  | -             | -               | -              | -                 | -        | 5.55        | -              |
| 130B              | -                | -      | 17.92        | -                  | 18.10         | -               | -              | -                 | -        | -           | -              |
| 131A              | 17.06            | 36.74  | 12.59        | -                  | _             | 1,024.69        | 496.79         | 83.95             | 1,311.68 | 1,064.17    | 55.37          |
| 131B              | -                | 15.76  | -            | -                  | -             | 324.37          | 23.68          | -                 | 351.43   | 50.33       | -              |
| 131C              | -                | -      | -            | -                  | -             | 37.53           | 26.17          | -                 | 59.85    | 95.38       | -              |
| 131D              | -                | -      | -            | -                  | -             | 69.05           | -              | -                 | 223.46   | -           | -              |
| 133A              | 56.63            | 26.53  | 94.44        | 25.42              | 8.30          | 99.75           | 361.19         | 67.91             | -        | 275.66      | 37.07          |
| 133B              | -                | -      | 28.41        | -                  | -             | -               | -              | -                 | -        | 44.41       | 13.20          |
| 135A              | 31.74            | -      | 41.93        | -                  | -             | -               | 50.15          | 3.48              | -        | 95.91       | -              |
| 144A              | -                | -      | 303.48       | 78.20              | 80.06         | -               | 9.55           | 14.50             | -        | 80.04       | -              |
| 144B              | -                | -      | 321.08       | 21.72              | 46.73         | -               | -              | -                 | -        | 31.57       | -              |
| 149A              | -                | -      | 9.04         | -                  | -             | 11.47           | -              | -                 | -        | 59.65       | -              |
| 150A              | -                | -      | -            | -                  | -             | 193.82          | 179.67         | 98.79             | 676.85   | 311.64      | -              |
| 150B              | -                | -      | -            | -                  | -             | -               | -              | -                 | 30.40    | -           | -              |
| 152B              | -                | -      | -            | -                  | -             | -               | -              | 8.38              | 40.11    | -           | -              |
| 153A              | -                | -      | -            | -                  | -             | 8.30            | 59.70          | 12.59             | -        | 83.13       | -              |
| 153B              | -                | -      | -            | -                  | -             | 3.96            | 17.76          | 4.84              | -        | 72.82       | 3.01           |
| 153C              | -                | -      | -            | -                  | -             | 9.63            | -              | -                 | -        | 139.87      | -              |
| 153D              | -                | -      | -            | -                  | -             | 40.27           | -              | -                 | -        | 102.98      | -              |
| 156A              | -                | -      | -            | -                  | -             | 4.84            | -              | -                 | -        | -           | -              |
| 28A               | 22.89            | 27.14  | _            | -                  | _             | 334.09          | _              | _                 | -        | -           | 9.18           |
| 28B               | -                | -      | -            | -                  | -             | 13.19           | -              | -                 | -        | -           | -              |
| 34A               | -                | 8.58   | _            | -                  | _             | 219.45          | -              | -                 | -        | -           | -              |
| 34B               | -                | -      | -            | -                  | _             | 144.76          | -              | -                 | -        | -           | -              |
| 43A               | 10.75            | -      | -            | -                  | 18.49         | -               | -              | -                 | -        | -           | 66.56          |
| 43B               | 5.94             | -      | -            | -                  | 20.31         | 122.52          | -              | -                 | -        | -           | -              |
| 48A               | -                | -      | -            | -                  | -             | 78.56           | -              | -                 | -        | -           | -              |



|                   | CRP <sup>1</sup> | Fallow | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated               | Low<br>Residue | Other<br>Cropland | Rice | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|--------------|--------------------|---------------|-------------------------|----------------|-------------------|------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |              |                    |               | Gg CO2 eq. <sup>3</sup> | 1              |                   |      |             |                |
| 48B               | -                | _      | -            | -                  | -             | 41.38                   | -              |                   | -    | -           | _              |
| 53A               | 21.07            | 73.90  | 9.41         | _                  | 4.83          | 8.71                    | -              | 15.65             | -    | -           | 236.38         |
| 53B               | 48.76            | 33.21  | 36.98        | 32.67              | 31.14         | -                       | -              | 47.75             | -    | 360.58      | 496.51         |
| 53C               | 3.40             | _      | -            | _                  | 5.36          | 9.60                    | _              | -                 | -    | 135.37      | 86.03          |
| 55A               | 33.47            | _      | 13.26        | _                  | 6.90          | -                       | 15.38          | 81.75             | -    | 74.47       | 674.62         |
| 55B               | 55.37            | _      | 27.40        | 33.02              | 19.63         | 20.35                   | 11.23          | 95.06             | -    | 898.33      | 284.56         |
| 55C               | 9.71             | _      | 12.59        | 31.06              | 37.59         | 33.13                   | _              | 28.82             | -    | 880.07      | 43.87          |
| 58A               | 70.80            | 180.91 | 56.94        | 48.28              | 42.39         | 151.71                  | _              | 26.64             | -    | -           | 69.75          |
| 58B               | _                | _      | _            | _                  | 5.41          | 44.87                   | _              | _                 | -    | _           | _              |
| 60A               | -                | 32.50  | _            | _                  | 15.03         | 62.91                   | _              | _                 | -    | _           | 25.51          |
| 63A               | 12.31            | 54.94  | 50.67        | _                  | 10.07         | -                       | _              | _                 | _    | 72.50       | 145.53         |
| 63B               | -                | _      | 12.66        | 12 10              | 20.87         | _                       | _              | 14 28             | _    | 95.52       | 26.14          |
| 67 A              | 18.93            | 27.10  | 12.00        | 12.10              | 3.76          | 198 75                  |                | 11.20             | _    | 8 26        | 6.09           |
| 67B               | 82.12            | 290.78 |              |                    | 5.70          | 299.07                  |                | 37.68             |      | 136.21      | 45.93          |
| 70 A              | 02.12            | 200.70 |              |                    |               | 0.42                    |                | 57.00             |      | 150.21      | +5.75          |
| 70R               | -                | _      | _            | _                  | -             | 13.32                   | -              | _                 | -    | -           | -              |
| 700               |                  | _      |              | -                  | -             | 5.74                    | -              | _                 |      |             |                |
| 700               | 30.01            | 53.05  | -            | -                  | -             | 140.68                  | -              | 12.21             | -    | 84.68       | 205.48         |
| 77 <b>D</b>       | 2 70             | 55.05  | -            | -                  | -             | 101.07                  | -              | 12.21             | -    | 04.00       | 203.40         |
| 770               | 170.25           | (2.42  | -            | -                  | -             | 729.79                  | 422.70         | 26.50             | -    | 20.00       | 240.97         |
| 770               | 24.07            | 03.43  | -            | -                  | -             | 24.14                   | 423.78         | 20.59             | -    | 39.00       | 249.07         |
| //D               | 24.07            | 0.75   | -            | -                  | -             | 24.14                   | -              | -                 | -    | -           | 17.00          |
| 77E               | 40.99            | 8.75   | -            | -                  | -             | 25.85                   | -              | -                 | -    | -           | 04.81          |
| /8A               | -                | -      | -            | -                  | -             | -                       | -              | -                 | -    | -           | 67.64          |
| /8B               | 42.10            | -      | -            | -                  | -             | 18.19                   | 145.65         | -                 | -    | -           | 218.02         |
| /8C               | 33.32            | 14.42  | -            | -                  | 5.96          | 43.64                   | 100.43         | 16.25             | -    | 13.68       | 603.55         |
| 80A               | 8.40             | -      | 27.05        | -                  | 22.64         | 22.27                   | -              | -                 | -    | 22.56       | 765.81         |
| 80B               | -                | -      | -            | -                  | -             | -                       | -              | -                 | -    | -           | 52.24          |
| 81A               | -                | -      | -            | -                  | -             | 45.92                   | 27.56          | 37.41             | -    | -           | 22.54          |
| 81B               | -                | -      | -            | -                  | -             | -                       | -              | -                 | -    | -           | 20.74          |
| 81C               | -                | -      | -            | -                  | -             | -                       | -              | -                 | -    | -           | 14.29          |
| 82B               | -                | -      | -            | -                  | -             | -                       | -              | -                 | -    | -           | 19.51          |
| 83A               | -                | -      | -            | -                  | -             | 56.87                   | -              | 10.66             | -    | 77.71       | 34.58          |
| 83C               | -                | -      | -            | -                  | -             | -                       | -              | -                 | -    | 14.75       | -              |
| 83D               | -                | -      | -            | -                  | -             | 134.23                  | 27.78          | -                 | -    | 84.73       | -              |
| 83E               | -                | -      | -            | -                  | -             | -                       | -              | -                 | -    | 23.22       | -              |
| 84A               | -                | -      | 27.81        | -                  | -             | -                       | -              | -                 | -    | -           | 36.13          |
| 84B               | -                | -      | -            | -                  | -             | 8.17                    | -              | -                 | -    | -           | 38.00          |
| 86A               | -                | -      | 49.22        | -                  | -             | -                       | 33.58          | 42.83             | -    | 488.92      | 190.60         |
| 87A               | -                | -      | -            | -                  | -             | -                       | -              | -                 | -    | 64.79       | 25.28          |
| 87B               | -                | -      | -            | -                  | -             | -                       | -              | -                 | -    | -           | 16.14          |
| 90A               | -                | -      | 66.98        | 87.67              | 90.75         | -                       | -              | -                 | -    | 121.72      | -              |
| 90B               | 3.69             | -      | 49.11        | 126.69             | 69.12         | -                       | -              | 33.79             | -    | 304.98      | -              |
| 91A               | 8.35             | -      | -            | 15.48              | 17.82         | 74.98                   | -              | -                 | -    | 95.00       | -              |
| 91B               | -                | -      | -            | -                  | 10.10         | -                       | -              | -                 | -    | 31.10       | -              |
| 94A               | -                | -      | -            | -                  | 59.97         | -                       | -              | -                 | -    | 64.25       | -              |
| 94B               | -                | -      | -            | -                  | 28.80         | -                       | -              | -                 | -    | -           | -              |
| 95A               | 9.07             | -      | 17.26        | 152.13             | 64.10         | -                       | -              | 36.21             | -    | 378.44      | 11.26          |
| 95B               | 11.11            | -      | 20.33        | 125.89             | 59.13         | 20.72                   | -              | 40.08             | -    | 924.96      | -              |

#### Continued - Appendix Table B-2 MLRA-Level Estimates of Total Annual Direct N<sub>2</sub>O Emissions by Major Crop Rotation, 2003-2007

<sup>1</sup> CRP = Conservation Reserve Program <sup>2</sup> MLRA = Major Land Resource Area

 ${}^3\mathrm{Gg}\,\mathrm{CO}_2$  eq. = Gigagrams carbon dioxide equivalent



## Appendix Table B-3 MLRA-Level Estimates of Total Annual Indirect N<sub>2</sub>O Emissions from Ammonia, Nitric Oxide, and Nitrogen Dioxide Volatilization, by Major Crop Rotation, 2003-2007

|                   | CRP <sup>1</sup> | Fallow | Hay Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated                       | Low<br>Residue | Other<br>Cropland | Rice  | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|-----------|--------------------|---------------|---------------------------------|----------------|-------------------|-------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |           |                    | Gg            | CO <sub>2</sub> eq <sup>3</sup> |                |                   |       |             |                |
| 2                 | -                | -      | 2.87      | 2.39               | 1.51          | 7.68                            | -              | -                 | -     | -           | 10.00          |
| 5                 | -                | -      | -         | -                  | -             | 2.44                            | -              | -                 | -     | -           | -              |
| 7                 | 0.43             | 1.81   | -         | -                  | -             | 23.14                           | -              | -                 | -     | -           | -              |
| 8                 | 7.53             | 18.96  | -         | -                  | -             | 8.51                            | -              | 0.83              | -     | -           | 6.04           |
| 9                 | 2.37             | 5.69   | -         | -                  | 0.93          | 2.09                            | -              | -                 | -     | -           | 20.10          |
| 10                | -                | 0.76   | -         | -                  | 0.45          | 10.05                           | -              | -                 | -     | -           | -              |
| 11                | -                | 1.66   | -         | -                  | -             | 57.62                           | -              | -                 | -     | -           | -              |
| 12                | -                | -      | -         | -                  | -             | 5.04                            | -              | -                 | -     | -           | -              |
| 13                | 3.63             | 1.26   | -         | 0.35               | 0.23          | 6.50                            | -              | -                 | -     | -           | 2.62           |
| 14                | -                | -      | 0.53      | -                  | -             | 3.70                            | -              | -                 | -     | -           | -              |
| 15                | -                | -      | -         | -                  | -             | 3.75                            | -              | 0.93              | -     | -           | -              |
| 16                | -                | -      | -         | -                  | -             | 1.74                            | -              | -                 | -     | -           | -              |
| 17                | -                | 1.54   | -         | -                  | -             | 53.44                           | -              | 2.85              | 19.26 | -           | -              |
| 21                | -                | -      | -         | -                  | -             | 12.04                           | -              | -                 | -     | -           | -              |
| 23                | -                | -      | -         | -                  | -             | 7.25                            | -              | -                 | -     | -           | -              |
| 24                | -                | -      | -         | -                  | -             | 6.75                            | -              | -                 | -     | -           | -              |
| 25                | -                | -      | -         | -                  | -             | 5.29                            | -              | -                 | -     | -           | -              |
| 26                | -                | -      | -         | -                  | -             | 0.65                            | -              | -                 | -     | -           | -              |
| 27                | -                | -      | -         | -                  | -             | 3.78                            | -              | 0.05              | -     | -           | -              |
| 29                | -                | -      | -         | -                  | -             | 0.28                            | -              | -                 | -     | -           | -              |
| 30                | -                | -      | -         | -                  | -             | 1.81                            | -              | -                 | -     | -           | -              |
| 31                | -                | 1.16   | -         | -                  | -             | 12.57                           | -              | 0.38              | -     | -           | -              |
| 32                | -                | -      | -         | -                  | -             | 8.41                            | -              | -                 | -     | -           | -              |
| 35                | -                | -      | -         | -                  | -             | 2.69                            | -              | -                 | -     | -           | -              |
| 36                | 0.50             | 1.36   | -         | -                  | -             | 6.95                            | -              | -                 | -     | -           | 1.01           |
| 40                | -                | -      | -         | -                  | -             | 11.86                           | -              | 0.65              | -     | -           | -              |
| 41                | -                | -      | -         | -                  | -             | 2.59                            | -              | -                 | -     | -           | -              |
| 42                | -                | -      | -         | -                  | -             | 12.57                           | -              | 1.84              | -     | -           | -              |
| 44                | -                | 4.13   | 0.68      | -                  | 1.21          | 22.16                           | -              | -                 | -     | -           | 1.41           |
| 46                | 1.08             | 8.06   | -         | -                  | 1.59          | 9.82                            | -              | -                 | -     | -           | 6.45           |
| 47                | -                | -      | -         | -                  | -             | 3.48                            | -              | -                 | -     | -           | -              |
| 49                | -                | 0.78   | -         | -                  | -             | 1.56                            | -              | -                 | -     | -           | -              |
| 51                | -                | -      | -         | -                  | -             | 14.66                           | -              | -                 | -     | -           | -              |
| 52                | 11.18            | 42.08  | -         | -                  | 0.38          | 4.71                            | -              | -                 | -     | -           | 10.53          |
| 54                | 4.36             | 4.78   | 5.46      | 2.90               | 3.75          | 2.67                            | -              | 1.33              | -     | 6.50        | 47.60          |
| 56                | 9.47             | -      | 1.74      | 1.76               | 0.83          | -                               | 3.22           | 29.41             | -     | 114.43      | 36.79          |
| 57                | -                | -      | -         | 3.10               | 2.44          | -                               | -              | -                 | -     | 16.24       | -              |
| 61                | -                | -      | -         | -                  | 0.53          | -                               | -              | -                 | -     | -           | -              |
| 64                | 0.50             | 5.67   | -         | -                  | 0.96          | 7.83                            | -              | -                 | -     | 2.01        | 2.14           |
| 65                | -                | -      | -         | -                  | 0.28          | 14.68                           | -              | -                 | -     | -           | -              |
| 66                | -                | -      | 1.76      | 2.37               | 1.86          | 14.13                           | -              | -                 | -     | 8.26        | 1.86           |
| 69                | 3.78             | 2.29   | -         | -                  | -             | 9.17                            | -              | -                 | -     | -           | -              |
| 71                | 0.48             | -      | 0.88      | -                  | 0.88          | 78.04                           | -              | -                 | -     | 14.83       | -              |
| 72                | 25.48            | 74.04  | -         | -                  | 0.28          | 105.14                          | -              | 17.35             | -     | 27.60       | 22.36          |



## Continued - Appendix Table B-3 MLRA-Level Estimates of Total Annual Indirect N<sub>2</sub>O Emissions from Ammonia, Nitric Oxide, and Nitrogen Dioxide Volatilization, by Major Crop Rotation, 2003-2007

|                   | CRP <sup>1</sup> | Fallow | Hay Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated | Low<br>Residue | Other<br>Cropland | Rice  | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|-----------|--------------------|---------------|-----------|----------------|-------------------|-------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |           |                    | Gg            | CO2 eq³   |                |                   |       |             |                |
| 73                | 10.05            | 33.59  | 1.41      | 3.32               | 1.26          | 34.42     | -              | 22.92             | -     | 35.28       | 40.54          |
| 74                | 3.78             | 0.55   | 1.26      | 1.31               | 0.63          | 4.48      | -              | 1.56              | -     | 31.38       | 31.35          |
| 75                | 0.83             | 1.99   | -         | -                  | 0.23          | 110.83    | -              | -                 | -     | 49.71       | 4.48           |
| 76                | 0.58             | -      | 3.37      | 0.63               | 0.28          | -         | -              | -                 | -     | 16.17       | 6.77           |
| 79                | 6.02             | 3.73   | -         | -                  | 0.33          | 19.49     | -              | 2.14              | -     | 8.59        | 28.53          |
| 85                | -                | 0.65   | -         | -                  | -             | -         | -              | -                 | -     | 2.87        | 9.04           |
| 89                | -                | -      | -         | 0.78               | 0.43          | 2.54      | -              | -                 | -     | 4.16        | -              |
| 92                | -                | -      | -         | -                  | 0.43          | -         | -              | -                 | -     | -           | -              |
| 96                | -                | -      | 0.48      | -                  | 0.40          | -         | -              | -                 | -     | -           | -              |
| 97                | -                | -      | -         | -                  | 0.83          | 1.36      | -              | -                 | -     | 16.32       | -              |
| 98                | 1.59             | -      | 4.56      | 3.10               | 4.84          | 19.42     | -              | 3.07              | -     | 146.79      | 1.26           |
| 99                | 0.98             | -      | -         | 0.86               | 1.21          | -         | 0.65           | 3.35              | -     | 139.84      | 0.83           |
| 101               | -                | -      | 5.79      | 7.86               | 6.14          | -         | -              | 3.05              | -     | 21.96       | 1.31           |
| 103               | 4.53             | -      | 0.86      | 2.52               | 1.39          | -         | -              | 1.44              | -     | 594.64      | -              |
| 104               | 2.22             | -      | 0.43      | 2.19               | 0.63          | -         | -              | 2.14              | -     | 271.62      | -              |
| 105               | 11.66            | -      | 1.99      | 14.15              | 3.85          | 2.27      | -              | 6.30              | -     | 151.17      | -              |
| 106               | 5.39             | -      | 2.69      | 1.54               | 0.83          | 10.85     | -              | 1.08              | -     | 135.26      | 4.03           |
| 109               | 19.87            | -      | 9.85      | 3.70               | 5.31          | -         | -              | 1.11              | -     | 137.17      | -              |
| 110               | -                | -      | -         | 0.38               | -             | -         | -              | 0.65              | -     | 148.15      | -              |
| 112               | 3.48             | -      | 11.71     | 2.17               | 2.49          | 4.10      | -              | 2.64              | -     | 115.64      | 23.82          |
| 113               | 6.35             | -      | 3.27      | 3.32               | 1.71          | 1.41      | -              | 1.46              | -     | 209.67      | 2.01           |
| 121               | -                | -      | 9.97      | 3.05               | 9.09          | -         | -              | -                 | -     | 12.67       | -              |
| 122               | 1.59             | -      | 16.12     | 5.52               | 12.82         | -         | 1.41           | -                 | -     | 55.30       | 1.66           |
| 123               | -                | -      | 3.65      | -                  | 2.47          | -         | -              | -                 | -     | 5.82        | -              |
| 124               | -                | -      | 6.32      | 3.88               | 4.99          | -         | -              | 0.88              | -     | 19.54       | -              |
| 125               | -                | -      | 2.57      | -                  | 1.01          | -         | -              | -                 | -     | 2.87        | -              |
| 126               | -                | -      | 16.07     | 3.25               | 4.41          | -         | -              | -                 | -     | 7.50        | -              |
| 127               | -                | -      | 8.31      | 3.45               | 3.27          | -         | -              | 0.88              | -     | 5.57        | -              |
| 128               | -                | -      | 10.85     | 2.39               | 7.83          | -         | 4.41           | 0.76              | -     | 14.20       | -              |
| 129               | -                | -      | 2.19      | -                  | -             | -         | -              | -                 | -     | 5.06        | -              |
| 134               | 9.27             | 1.36   | 8.34      | -                  | -             | 20.35     | 18.79          | 5.84              | 27.20 | 87.74       | 3.35           |
| 136               | 1.54             | -      | 39.18     | 6.75               | 1.56          | -         | 1.51           | 3.10              | -     | 29.79       | 3.35           |
| 137               | -                | -      | 3.00      | -                  | -             | -         | 1.99           | 0.76              | -     | 4.33        | -              |
| 138               | -                | -      | -         | -                  | -             | 0.98      | -              | -                 | -     | -           | -              |
| 139               | -                | -      | 4.21      | 4.84               | 5.99          | -         | -              | 1.86              | -     | 41.00       | -              |
| 140               | -                | -      | 26.32     | 14.23              | 13.57         | -         | -              | 2.19              | -     | 13.30       | -              |
| 142               | -                | -      | 9.34      | 4.13               | 6.22          | -         | -              | -                 | -     | 3.42        | -              |
| 143               | -                | -      | 3.80      | -                  | 1.13          | -         | -              | -                 | -     | -           | -              |
| 145               | -                | -      | 1.99      | -                  | -             | -         | -              | -                 | -     | 0.55        | -              |
| 146               | -                | -      | -         | -                  | -             | -         | 1.13           | -                 | -     | -           | -              |
| 147               | -                | -      | 19.67     | 11.13              | 7.08          | -         | -              | 3.53              | -     | 38.53       | 1.84           |
| 148               | -                | -      | 9.49      | 6.85               | 3.93          | -         | -              | 3.32              | -     | 35.08       | 2.12           |
| 155               | -                | -      | _         | -                  | -             | 9.22      | -              | _                 | -     | -           | -              |
| 102A              | 7.61             | -      | 1.51      | 2.97               | 1.94          | 6.35      | -              | 3.50              | -     | 196.43      | 10.02          |
| 102B              | -                | -      | _         | -                  | 0.40          | -         | -              | _                 | -     | 38.81       | -              |
| 102C              | 3.27             | -      | 1.11      | 2.82               | 1.28          | 62.05     | -              | _                 | -     | 156.76      | -              |
| 107A              | -                | -      | -         | -                  | -             | -         | -              | 1.11              | -     | 115.34      | -              |



## Continued - Appendix Table B-3 MLRA-Level Estimates of Total Annual Indirect N<sub>2</sub>O Emissions from Ammonia, Nitric Oxide, and Nitrogen Dioxide Volatilization, by Major Crop Rotation, 2003-2007

|                   | CRP <sup>1</sup> | Fallow | Hay Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated           | Low<br>Residue | Other<br>Cropland | Rice  | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|-----------|--------------------|---------------|---------------------|----------------|-------------------|-------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |           |                    | Gg            | CO2 eq <sup>3</sup> |                |                   |       |             |                |
| 107B              | 4.18             | -      | 2.44      | 1.54               | 0.96          | 13.40               | -              | -                 | -     | 273.66      | 1.06           |
| 108A              | -                | -      | -         | -                  | 0.35          | -                   | -              | -                 | -     | 239.36      | -              |
| 108B              | 0.93             | -      | -         | -                  | 0.53          | 3.48                | -              | -                 | -     | 232.71      | -              |
| 108C              | 5.62             | -      | 0.68      | 1.71               | 0.55          | -                   | -              | 1.71              | -     | 152.03      | -              |
| 108D              | 5.39             | -      | 0.98      | 2.04               | 1.26          | -                   | -              | -                 | -     | 84.89       | -              |
| 111A              | -                | -      | 0.63      | -                  | 0.63          | -                   | -              | -                 | -     | 200.00      | -              |
| 111B              | 4.26             | -      | 0.76      | 1.99               | 1.59          | 1.11                | -              | 1.46              | -     | 228.33      | 1.13           |
| 111C              | -                | -      | -         | -                  | -             | -                   | -              | -                 | -     | 73.06       | -              |
| 111D              | -                | -      | -         | -                  | 0.33          | -                   | -              | -                 | -     | 105.21      | -              |
| 111E              | -                | -      | _         | 0.88               | 0.38          | -                   | _              | 0.73              | -     | 41.45       | _              |
| 114A              | -                | -      | 1.46      | 1.16               | 1.28          | -                   | _              | -                 | -     | 49.99       | _              |
| 114B              | 0.86             | -      | 0.91      | 1.91               | 0.58          | -                   | _              | -                 | -     | 98.54       | 1.46           |
| 115A              | -                | -      | _         | -                  | 0.63          | 2.44                | _              | -                 | -     | 77.06       | 1.71           |
| 115B              | 1.03             | -      | 3.45      | -                  | 0.88          | _                   | _              | 1.84              | _     | 47.27       | 1.28           |
| 115C              | 4.41             | -      | 2.37      | 1.81               | 1.46          | 7.68                | _              | 1.74              | _     | 190.46      | _              |
| 116A              | -                | -      | 18.18     | _                  | 5.19          | _                   | _              | _                 | _     | 9.42        | _              |
| 116B              | -                | -      | 11.11     | -                  | 2.42          | _                   | -              | -                 | _     | 2.52        | 1.18           |
| 118A              | -                | -      | 1.54      | _                  | _             | -                   | _              | -                 | _     | 2.90        | 1.31           |
| 120A              | 4.16             | -      | 3.00      | 2.24               | 2.97          | -                   | _              | -                 | _     | 48.05       | _              |
| 120B              | -                | -      | 1.21      | _                  | _             | _                   | -              | -                 | _     | 12.92       | -              |
| 120C              | -                | -      | _         | -                  | -             | _                   | -              | -                 | _     | 2.44        | _              |
| 130A              | -                | -      | _         | -                  | -             | -                   | _              | -                 | _     | 0.76        | _              |
| 130B              | -                | -      | 2.72      | -                  | 1.99          | -                   | _              | -                 | _     | _           | _              |
| 131A              | 2.59             | 2.32   | 1.36      | -                  | _             | 114.35              | 35.10          | 9.59              | 86.53 | 153.74      | 5.64           |
| 131B              | _                | 1.06   | _         | -                  | -             | 30.77               | 1.94           | _                 | 24.60 | 7.15        | _              |
| 131C              | -                | _      | _         | -                  | -             | 2.44                | 2.82           | -                 | 3.10  | 13.60       | -              |
| 131D              | -                | -      | _         | -                  | -             | 11.26               | _              | -                 | 20.83 | _           | _              |
| 133A              | 15.19            | 4.36   | 20.15     | 6.90               | 0.55          | 18.53               | 54.57          | 13.75             | _     | 68.42       | 4.66           |
| 133B              | _                | -      | 6.12      | _                  | _             | _                   | _              | _                 | _     | 4.16        | 1.44           |
| 135A              | 5.69             | -      | 5.31      | -                  | -             | -                   | 4.63           | 0.50              | _     | 20.57       | _              |
| 144A              | _                | -      | 13.72     | 2.80               | 2.82          | -                   | 0.38           | 0.86              | _     | 3.27        | _              |
| 144B              | -                | -      | 10.68     | 0.86               | 1.74          | -                   | _              | _                 | _     | 0.73        | _              |
| 149A              | -                | -      | 0.86      | _                  | _             | 1.26                | _              | -                 | _     | 8.97        | _              |
| 150A              | -                | -      | _         | -                  | -             | 21.93               | 11.58          | 15.26             | 31.23 | 24.68       | _              |
| 150B              | -                | -      | _         | -                  | -             | _                   | _              | _                 | 1.21  | _           | _              |
| 152B              | -                | -      | _         | -                  | -             | -                   | _              | 1.28              | 1.84  | -           | _              |
| 153A              | -                | -      | _         | -                  | -             | 1.79                | 9.70           | 2.49              | _     | 25.74       | _              |
| 153B              | -                | -      | _         | -                  | -             | 0.68                | 2.47           | 0.83              | _     | 16.75       | 0.35           |
| 153C              | -                | -      | _         | -                  | -             | 1.08                |                | -                 | _     | 18.79       | -              |
| 153D              | _                | _      | _         | _                  | _             | 4.68                | _              | _                 | _     | 15.34       | _              |
| 156A              | _                | _      | _         | _                  | _             | 0.55                | _              | _                 | _     | -           | _              |
| 28A               | 1.54             | 1.28   | _         | _                  | _             | 18.11               | _              | _                 | _     | _           | 0.53           |
| 28B               |                  |        | _         | _                  | _             | 1.74                | _              | _                 | _     |             |                |
| 2010<br>34 A      | _                | 0.53   |           | _                  |               | 14 35               | _              |                   |       |             | _              |
| 34R               | _                |        |           | _                  |               | 12.69               | _              |                   |       |             | _              |
| 43A               | 0.55             | _      |           | _                  | 0.33          | 12.07               | _              |                   |       |             | 2.57           |
| 43B               | 0.45             | -      | _         | -                  | 0.43          | 6.37                | _              | _                 | _     | _           | -              |



## Continued - Appendix Table B-3 MLRA-Level Estimates of Total Annual Indirect N<sub>2</sub>O Emissions from Ammonia, Nitric Oxide, and Nitrogen Dioxide Volatilization, by Major Crop Rotation, 2003-2007

|                   | CRP <sup>1</sup> | Fallow | Hay Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated                       | Low<br>Residue | Other<br>Cropland | Rice | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|-----------|--------------------|---------------|---------------------------------|----------------|-------------------|------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |           |                    | Gg            | CO <sub>2</sub> eq <sup>3</sup> |                |                   |      |             |                |
| 48A               | -                | -      | -         | -                  | -             | 6.09                            | -              | -                 | -    | -           | -              |
| 48B               | -                | -      | -         | -                  | -             | 2.64                            | -              | -                 | -    | -           | -              |
| 53A               | 4.91             | 7.81   | 0.65      | -                  | 0.23          | 0.88                            | -              | 1.59              | -    | -           | 25.36          |
| 53B               | 8.84             | 3.20   | 3.32      | 3.30               | 2.12          | -                               | -              | 4.99              | -    | 47.55       | 51.93          |
| 53C               | 0.53             | -      | -         | -                  | 0.40          | 1.03                            | -              | -                 | -    | 13.85       | 7.96           |
| 55A               | 5.59             | -      | 1.16      | -                  | 0.38          | -                               | 0.78           | 9.02              | -    | 10.83       | 67.72          |
| 55B               | 9.09             | -      | 2.39      | 3.37               | 1.26          | 3.10                            | 0.81           | 13.37             | -    | 135.94      | 36.31          |
| 55C               | 1.79             | -      | 1.26      | 2.77               | 2.34          | 5.21                            | -              | 3.22              | -    | 115.16      | 4.31           |
| 58A               | 9.44             | 13.32  | 5.29      | 3.60               | 2.34          | 11.28                           | -              | 1.99              | -    | -           | 6.77           |
| 58B               | -                | -      | _         | -                  | 0.33          | 3.70                            | _              | -                 | -    | -           | -              |
| 60A               | -                | 2.14   | _         | _                  | 1.03          | 1.49                            | _              | _                 | -    | -           | 2.22           |
| 63A               | 1.11             | 1.79   | 1.44      | -                  | 0.33          | _                               | -              | -                 | _    | 3.02        | 7.50           |
| 63B               | _                |        | 0.60      | 0.58               | 0.55          | _                               | _              | 0.55              | _    | 4.26        | 1.69           |
| 67A               | 3.37             | 2.80   | _         | _                  | 0.38          | 18.79                           | _              | _                 | _    | 0.86        | 0.71           |
| 67B               | 15.08            | 28.96  | _         | _                  | -             | 24.93                           | _              | 4 00              | _    | 12 47       | 5.24           |
| 70A               | -                |        | _         | _                  | _             | 1 11                            | _              | -                 | _    | -           |                |
| 70R               |                  |        |           |                    |               | 2 30                            |                |                   |      |             |                |
| 70D               |                  |        |           |                    |               | 0.55                            |                |                   |      |             |                |
| 70C               | 8 4 9            | 5 59   |           |                    |               | 42.86                           |                | 1 1 3             |      | 9.34        | 16.90          |
| 77 <b>B</b>       | 0.96             | 5.57   |           |                    |               | 14.00                           |                | 1.15              |      | 2.54        | 10.20          |
| 77D               | 40.52            | 6.40   | -         | -                  | -             | 94.64                           | 54.85          | 2.60              | -    | 3.12        | 20.62          |
| 77D               | 6.27             | 0.40   | -         | -                  | -             | 3.83                            | 54.05          | 2.09              | -    | 5.42        | 1.04           |
| 77E               | 10.27            | 0.01   | -         | -                  | -             | 2.05                            | -              | -                 | -    | -           | 5.74           |
| 77 L              | 10.27            | 0.91   | -         | -                  | -             | 5.25                            | -              | -                 | -    | -           | 5.74           |
| / 0/A<br>70D      | -                | -      | -         | -                  | -             | 2.07                            | 10.71          | -                 | -    | -           | 0.42           |
| /8D               | 0.41             | 1.22   | -         | -                  | - 29          | 2.97                            | 18./1          | 170               | -    | - 174       | 20.55          |
| 78C               | 8.41             | 1.55   | - 1.01    | -                  | 0.38          | 0.19                            | 10.78          | 1.70              | -    | 1.74        | 58.40          |
| 80A               | 1.61             | -      | 1.81      | -                  | 1.33          | 2.74                            | -              | -                 | -    | 2.54        | 80.38          |
| 80B               | -                | -      | -         | -                  | -             | -                               | -              | -                 | -    | -           | 6.//           |
| 81A               | -                | -      | -         | -                  | -             | 5.94                            | 3.10           | 3.27              | -    | -           | 1.66           |
| 81B               | -                | -      | -         | -                  | -             | -                               | -              | -                 | -    | -           | 1./4           |
| 81C               | -                | -      | -         | -                  | -             | -                               | -              | -                 | -    | -           | 1.11           |
| 82B               | -                | -      | -         | -                  | -             | -                               | -              | -                 | -    | -           | 1.86           |
| 83A               | -                | -      | -         | -                  | -             | 6.5/                            | -              | 1.11              | -    | 8.41        | 3.58           |
| 83C               | -                | -      | -         | -                  | -             | -                               | -              | -                 | -    | 2.12        | -              |
| 83D               | -                | -      | -         | -                  | -             | 14.08                           | 3.10           | -                 | -    | 10.45       | -              |
| 83E               | -                | -      | -         | -                  | -             | -                               | -              | -                 | -    | 3.60        | -              |
| 84A               | -                | -      | 2.24      | -                  | -             | -                               | -              | -                 | -    | -           | 3.73           |
| 84B               | -                | -      | -         | -                  | -             | 1.61                            | -              | -                 | -    | -           | 5.36           |
| 86A               | -                | -      | 2.06      | -                  | -             | -                               | 1.69           | 3.70              | -    | 29.41       | 16.24          |
| 87A               | -                | -      | -         | -                  | -             | -                               | -              | -                 | -    | 4.58        | 1.08           |
| 87B               | -                | -      | -         | -                  | -             | -                               | -              | -                 | -    | -           | 1.99           |
| 90A               | -                | -      | 2.62      | 4.46               | 2.92          | -                               | -              | -                 | -    | 11.76       | -              |
| 90B               | 0.60             | -      | 1.69      | 7.00               | 2.14          | -                               | -              | 2.34              | -    | 34.45       | -              |
| 91A               | 1.64             | -      | -         | 1.18               | 0.88          | 9.95                            | -              | -                 | -    | 12.77       | -              |
| 91B               | -                | -      | -         | -                  | 0.43          | -                               | -              | -                 | -    | 3.98        | -              |
| 94A               | -                | -      | -         | -                  | 2.37          | -                               | -              | -                 | -    | 5.36        | -              |
| 94B               | -                | -      | -         | -                  | 0.93          | -                               | -              | -                 | -    | -           | -              |
| 95A               | 1.13             | -      | 0.96      | 7.98               | 2.39          | -                               | -              | 2.37              | -    | 31.73       | 0.88           |
| 95B               | 1.54             | -      | 1.13      | 6.98               | 1.79          | 2.19                            | -              | 2.95              | -    | 100.28      | -              |

Note: N<sub>2</sub>O is nitrous oxide.

 $^{1}$  CRP = Conservation Reserve Program

 $^{2}$  MLRA = Major Land Resource Area

<sup>3</sup> Gg CO<sub>2</sub> eq. = Gigagrams carbon dioxide equivalent


# Appendix Table B-4 MLRA-Level Estimates of Total Annual Indirect N<sub>2</sub>O Emissions for Nitrate Leaching by Major Crop Rotation, 2003-2007

|                   | CRP <sup>1</sup> | Fallow | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated                          | Low<br>Residue | Other<br>Cropland | Rice  | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|--------------|--------------------|---------------|------------------------------------|----------------|-------------------|-------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |              |                    |               | Gg CO <sub>2</sub> eq <sup>3</sup> |                |                   |       |             |                |
| 2                 | -                | -      | 4.14         | 5.33               | 6.61          | 26.68                              | -              | -                 | -     | -           | 61.8           |
| 5                 | -                | -      | -            | -                  | -             | 3.97                               | -              | -                 | -     | -           | -              |
| 7                 | 0                | 3.58   | -            | -                  | -             | 58.46                              | -              | -                 | -     | -           | -              |
| 8                 | 0.12             | 13.07  | -            | -                  | -             | 30.04                              | -              | 0                 | -     | -           | 1.09           |
| 9                 | 0.27             | 5.78   | -            | -                  | 0.38          | 2.25                               | -              | -                 | -     | -           | 35.99          |
| 10                | -                | 2.21   | -            | -                  | 0.16          | 7.15                               | -              | -                 | -     | -           | -              |
| 11                | -                | 15.27  | -            | -                  | -             | 205.46                             | -              | -                 | -     | -           | -              |
| 12                | -                | -      | -            | -                  | -             | 4.46                               | -              | -                 | -     | -           | -              |
| 13                | 0.01             | 2.05   | -            | 0.17               | 0.15          | 24.77                              | -              | -                 | -     | -           | 7.4            |
| 14                | -                | -      | 3.4          | -                  | -             | 9.47                               | -              | -                 | -     | -           | -              |
| 15                | -                | -      | -            | -                  | -             | 7.23                               | -              | 1.39              | -     | -           | -              |
| 16                | -                | -      | -            | -                  | -             | 2.91                               | -              | -                 | -     | -           | -              |
| 17                | -                | 4.52   | -            | -                  | -             | 97.01                              | -              | 0.51              | 13.81 | -           | -              |
| 21                | -                | -      | -            | -                  | -             | 11.92                              | -              | -                 | -     | -           | -              |
| 23                | -                | -      | -            | -                  | -             | 6.28                               | -              | -                 | -     | -           | -              |
| 24                | -                | -      | -            | -                  | -             | 7.61                               | -              | -                 | -     | -           | -              |
| 25                | -                | -      | -            | -                  | -             | 0.9                                | -              | -                 | -     | -           | -              |
| 26                | -                | -      | -            | -                  | -             | 1.43                               | -              | -                 | -     | -           | -              |
| 27                | -                | -      | -            | -                  | -             | 2.83                               | -              | 0                 | -     | -           | -              |
| 29                | -                | -      | -            | -                  | -             | 0.22                               | -              | -                 | -     | -           | -              |
| 30                | -                | -      | -            | -                  | -             | 1.72                               | -              | -                 | -     | -           | -              |
| 31                | -                | 0      | -            | -                  | -             | 0.56                               | -              | 0                 | -     | -           | -              |
| 32                | -                | -      | -            | -                  | -             | 25.29                              | -              | -                 | -     | -           | -              |
| 35                | -                | -      | -            | -                  | -             | 29.4                               | -              | -                 | -     | -           | -              |
| 36                | 0                | 0.46   | -            | -                  | -             | 12.18                              | -              | -                 | -     | -           | 0              |
| 40                | -                | -      | -            | -                  | -             | 34.67                              | -              | 0.01              | -     | -           | -              |
| 41                | -                | -      | -            | -                  | -             | 2.13                               | -              | -                 | -     | -           | -              |
| 42                | -                | -      | -            | -                  | -             | 247.13                             | -              | 0                 | -     | -           | -              |
| 44                | -                | 4.95   | 0.98         | -                  | 1.02          | 11.73                              | -              | -                 | -     | -           | 2.3            |
| 46                | 0.01             | 1.57   | -            | -                  | 0.27          | 3.45                               | -              | -                 | -     | -           | 1.7            |
| 47                | -                | -      | -            | -                  | -             | 3.15                               | -              | -                 | -     | -           | -              |
| 49                | -                | 0.3    | -            | -                  | -             | 0.74                               | -              | -                 | -     | -           | -              |
| 51                | -                | -      | -            | -                  | -             | 74.83                              | -              | -                 | -     | -           | -              |
| 52                | 0                | 1.11   | -            | -                  | 0             | 12.3                               | -              | -                 | -     | -           | 0              |
| 54                | 0                | 0      | 0            | 0                  | 0             | 3.2                                | -              | 0                 | -     | 0           | 0              |
| 56                | 0.47             | -      | 0.58         | 0.47               | 0.07          | -                                  | 0.03           | 3.25              | -     | 8.23        | 6.78           |
| 57                | -                | -      | -            | 2.65               | 2.25          | -                                  | -              | -                 | -     | 16.08       | -              |
| 61                | -                | -      | -            | -                  | 0.01          | -                                  | -              | -                 | -     | -           | -              |
| 64                | 0                | 2.14   | -            | -                  | 0             | 7.12                               | -              | -                 | -     | 0           | 0              |
| 65                | -                | -      | -            | -                  | 0             | 37.67                              | -              | -                 | -     | -           | -              |
| 66                | -                | -      | 0            | 0                  | 0             | 23.85                              | -              | -                 | -     | 0.06        | 0              |
| 69                | 0                | 17.03  | -            | -                  | -             | 37.29                              | -              | -                 | -     | -           | -              |
| 71                | 0.02             | -      | 0.17         | -                  | 0.07          | 100.12                             | -              | -                 | -     | 3.71        | -              |
| 72                | 0                | 26.78  | -            | -                  | 0             | 197.64                             | -              | 0                 | -     | 0           | 0              |
| 73                | 0                | 7.93   | 0            | 0                  | 0             | 48.88                              | -              | 0.05              | -     | 0.75        | 2.7            |



|                   | CRP <sup>1</sup> | Fallow | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated                          | Low<br>Residue | Other<br>Cropland | Rice  | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|--------------|--------------------|---------------|------------------------------------|----------------|-------------------|-------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |              |                    |               | Gg CO <sub>2</sub> eq <sup>3</sup> |                |                   |       |             |                |
| 74                | 0.41             | 0.34   | 7.67         | 2.13               | 0.13          | 4.92                               | -              | 0.47              | -     | 13.12       | 14.76          |
| 75                | 0.1              | 1.35   | -            | -                  | 0.04          | 69.38                              | _              | _                 | -     | 13.65       | 1.63           |
| 76                | 0.07             | _      | 21.66        | 2.74               | 0.09          | _                                  | _              | _                 | -     | 10          | 5.82           |
| 79                | 0.1              | 1.39   | -            | _                  | 0.01          | 37.21                              | _              | 0.26              | -     | 0.76        | 5.96           |
| 85                | -                | 0      | -            | _                  | _             | _                                  | _              | _                 | -     | 0.14        | 1.64           |
| 89                | -                | _      | -            | 1.19               | 0.79          | 7.67                               | _              | _                 | -     | 4.71        | _              |
| 92                | -                | _      | -            | _                  | 0.26          | _                                  | _              | _                 | -     | -           | _              |
| 96                | -                | _      | 0.22         | _                  | 0.5           | _                                  | _              | _                 | -     | _           | -              |
| 97                | -                | -      | -            | -                  | 1.6           | 2.67                               | _              | _                 | -     | 19.93       | -              |
| 98                | 0.42             | -      | 2.02         | 4.22               | 7.81          | 29.04                              | _              | 3.26              | -     | 144.3       | 1.65           |
| 99                | 0.24             | _      | -            | 1                  | 2.21          | _                                  | 1.35           | 4.01              | -     | 93.76       | 1.18           |
| 101               | -                | _      | 3.66         | 17.43              | 10.24         | _                                  | _              | 7.48              | -     | 65.01       | 3.5            |
| 103               | 0.43             | _      | 0.37         | 1.83               | 1.07          | _                                  | _              | 1.31              | -     | 411.02      | _              |
| 104               | 0.25             | _      | 0.16         | 2.23               | 0.86          | _                                  | _              | 2.36              | -     | 206.26      | _              |
| 105               | 1.16             | _      | 1.66         | 15.61              | 5.89          | 4.87                               | _              | 6.02              | -     | 119.12      | _              |
| 106               | 0.18             | _      | 0.73         | 0.27               | 0.23          | 5.15                               | _              | 0.39              | -     | 39.85       | 2.36           |
| 109               | 3.54             | _      | 4.28         | 2.98               | 6.51          | _                                  | _              | 1.18              | -     | 97.46       | -              |
| 110               | -                | _      | -            | 0.32               | _             | _                                  | _              | 0.4               | -     | 103.26      | -              |
| 112               | 0.41             | _      | 3.3          | 2.03               | 3.31          | 3.98                               | _              | 3.08              | -     | 78.98       | 29.11          |
| 113               | 1.28             | _      | 1.1          | 2.48               | 2.86          | 0.86                               | _              | 0.81              | -     | 144.67      | 1.91           |
| 121               | -                | _      | 5.61         | 3.26               | 20.21         | _                                  | _              | _                 | -     | 14.82       | -              |
| 122               | 0.48             | _      | 8.75         | 4.11               | 25.61         | _                                  | 3.64           | _                 | -     | 54.14       | 3.17           |
| 123               | -                | _      | 1.75         | _                  | 5.28          | _                                  | _              | _                 | -     | 5.5         | _              |
| 124               | -                | _      | 3.9          | 3.75               | 10.43         | _                                  | _              | 1.47              | -     | 24.22       | -              |
| 125               | -                | _      | 1.67         | _                  | 2.4           | _                                  | _              | _                 | -     | 3.3         | _              |
| 126               | -                | _      | 8.38         | 3.59               | 7.43          | _                                  | _              | _                 | -     | 10.49       | -              |
| 127               | -                | _      | 5.17         | 4.39               | 5.94          | _                                  | _              | 1.56              | -     | 15.79       | -              |
| 128               | -                | _      | 5.5          | 2.59               | 11.33         | _                                  | 9.98           | 0.95              | -     | 16.53       | -              |
| 129               | -                | -      | 1.58         | _                  | _             | -                                  | _              | _                 | -     | 7.68        | -              |
| 134               | 3.57             | 5.93   | 7.18         | _                  | _             | 28.4                               | 63.09          | 8.5               | 35.93 | 105.34      | 10.07          |
| 136               | 0.75             | -      | 33.14        | 7.01               | 3.57          | -                                  | 3.62           | 3.12              | -     | 31.9        | 7.6            |
| 137               | -                | -      | 4.04         | -                  | -             | -                                  | 5.79           | 1.03              | -     | 5.26        | -              |
| 138               | -                | -      | -            | -                  | -             | 2.65                               | -              | -                 | -     | -           | -              |
| 139               | -                | -      | 9.46         | 13.09              | 14.3          | -                                  | -              | 3.18              | -     | 60.85       | -              |
| 140               | -                | -      | 39.48        | 33.36              | 22.69         | -                                  | -              | 8.92              | -     | 57.48       | -              |
| 142               | -                | -      | 17.54        | 18.47              | 12.99         | -                                  | -              | -                 | -     | 25.8        | -              |
| 143               | -                | -      | 11.11        | -                  | 2.97          | -                                  | -              | _                 | -     | -           | -              |
| 145               | -                | -      | 5.16         | -                  | -             | -                                  | -              | _                 | -     | 4.33        | -              |
| 146               | -                | -      | -            | -                  | -             | -                                  | 4.91           | -                 | -     | -           | -              |
| 147               | -                | -      | 33.68        | 25.13              | 15.9          | -                                  | -              | 10.42             | -     | 103.97      | 5.24           |
| 148               | -                | -      | 17.18        | 15.57              | 9.57          | -                                  | -              | 8.09              | -     | 63.33       | 5.66           |
| 155               | -                | _      | -            | -                  | _             | 35.28                              | _              | _                 | -     | -           | -              |
| 102A              | 0.2              | _      | 0.13         | 0.75               | 0.44          | 4.2                                | -              | 1.15              | -     | 43.26       | 4.4            |
| 102B              | -                | -      | -            | -                  | 0             | -                                  | -              | _                 | -     | 0.83        | -              |
| 102C              | 0.17             | -      | 0.22         | 0.76               | 0.31          | 60.73                              | -              | _                 | -     | 37.66       | -              |
| 107A              | -                | _      | -            | -                  | -             | -                                  | -              | 0.32              | -     | 43.14       | -              |
| 107B              | 0.25             | -      | 0.26         | 0.29               | 0.46          | 4.8                                | -              | -                 | -     | 84.04       | 0.52           |

# Continued - Appendix Table B-4 MLRA-Level Estimates of Total Annual Indirect N<sub>2</sub>O Emissions for Nitrate Leaching by Major Crop Rotation, 2003-2007



# Continued - Appendix Table B-4 MLRA-Level Estimates of Total Annual Indirect N<sub>2</sub>O Emissions for Nitrate Leaching by Major Crop Rotation, 2003-2007

|                   | CRP <sup>1</sup> | Fallow | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated              | Low<br>Residue | Other<br>Cropland | Rice   | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|--------------|--------------------|---------------|------------------------|----------------|-------------------|--------|-------------|----------------|
| MLRA <sup>2</sup> |                  | ·      | ·            | ·                  | ·             | Gg_CO2 eq <sup>3</sup> |                |                   | ·      |             | ·              |
| 108A              | -                | -      | -            | -                  | 0.66          | -                      | -              | -                 | -      | 109.02      | -              |
| 108B              | 0.15             | -      | -            | -                  | 0.56          | 3.34                   | -              | -                 | -      | 87.05       | -              |
| 108C              | 0.51             | -      | 0.45         | 0.63               | 0.34          | -                      | -              | 0.83              | -      | 48.65       | -              |
| 108D              | 0.53             | -      | 0.26         | 1.52               | 1.13          | -                      | -              | -                 | -      | 43.68       | -              |
| 111A              | -                | -      | 0.41         | -                  | 2.18          | -                      | -              | -                 | -      | 175.63      | -              |
| 111B              | 0.94             | -      | 0.64         | 2.75               | 3.62          | 1.57                   | -              | 1.61              | -      | 219.36      | 1.53           |
| 111C              | -                | -      | -            | -                  | -             | -                      | -              | -                 | -      | 83.03       | -              |
| 111D              | -                | -      | -            | -                  | 0.7           | -                      | -              | -                 | -      | 81.58       | -              |
| 111E              | -                | -      | -            | 1.18               | 0.94          | -                      | -              | 0.56              | -      | 36.07       | -              |
| 114A              | -                | -      | 1.1          | 1.16               | 2.85          | -                      | -              | -                 | -      | 39.97       | -              |
| 114B              | 0.17             | -      | 0.62         | 1.86               | 1.71          | -                      | -              | -                 | -      | 72.44       | 1.46           |
| 115A              | -                | -      | -            | -                  | 1.45          | 2.53                   | -              | -                 | -      | 62.06       | 2.14           |
| 115B              | 0.18             | -      | 1.08         | -                  | 1.5           | -                      | -              | 1.44              | -      | 28.76       | 1.81           |
| 115C              | 0.68             | -      | 0.45         | 0.94               | 1.3           | 7.98                   | -              | 0.83              | -      | 70.74       | -              |
| 116A              | -                | -      | 7.42         | -                  | 7.24          | -                      | -              | -                 | -      | 11.49       | -              |
| 116B              | -                | -      | 3.94         | _                  | 3.61          | -                      | -              | -                 | -      | 3.02        | 1.95           |
| 118A              | -                | _      | 0.97         | _                  | _             | _                      | _              | -                 | _      | 2.95        | 3.15           |
| 120A              | 1.6              | _      | 2.06         | 2.37               | 8.37          | _                      | _              | -                 | _      | 51.06       | _              |
| 120B              | _                | -      | 0.83         | _                  | _             | _                      | _              | _                 | _      | 14.58       | _              |
| 120C              | -                | _      | _            | _                  | _             | _                      |                | -                 | -      | 2.19        | _              |
| 130A              | -                | _      | -            | _                  | _             | _                      |                | _                 | -      | 0.95        | _              |
| 130B              | -                | _      | 2.15         | _                  | 3.01          | _                      |                | _                 | -      | _           | _              |
| 131A              | 0.75             | 9.28   | 0.79         | _                  | _             | 152.94                 | 80.35          | 14.83             | 110.32 | 116.32      | 12.72          |
| 131B              | -                | 3.25   | _            | _                  | _             | 28.1                   | 4.12           | -                 | 11.66  | 4.16        | -              |
| 131D              | _                |        | _            | _                  | _             | 2.28                   | 6.37           | _                 | 2.87   | 8.86        | _              |
| 1310<br>131D      | _                | _      | _            | _                  | _             | 14.36                  | -              | _                 | 21.64  | -           | _              |
| 131D              | 7.91             | 14.54  | 24.16        | 6.83               | 1.81          | 40.25                  | 165.85         | 22.55             |        | 86.12       | 15.22          |
| 133B              | -                | -      | 6.01         |                    |               | 10.20                  | -              | -                 | _      | 3.97        | 2              |
| 135A              | 2.04             | _      | 41           | _                  | _             | _                      | 14.76          | 0.61              | _      | 17.05       | _              |
| 144A              | 2.01             | _      | 30.65        | 10.21              | 6.92          | _                      | 3 56           | 3.23              | _      | 16.66       | _              |
| 144R              | _                | _      | 28.47        | 3 21               | 5.6           |                        | 5.50           | 5.25              | _      | 8.94        | _              |
| 149A              | _                | _      | 20.47        | 5.21               | 5.0           | 3.15                   |                | _                 | _      | 11 11       |                |
| 150A              |                  |        | 2.5          |                    |               | 25.43                  | 10.42          | 5.69              | 26.23  | 12.64       |                |
| 150R              |                  |        |              |                    |               | 23.43                  | 10.42          | 5.07              | 0.36   | 12.04       |                |
| 150D              | -                | _      | _            |                    | -             | -                      |                | 0.44              | 1.58   | _           | _              |
| 152D              | -                | _      | _            |                    | -             | 3 75                   | 28.31          | 4.00              | 1.50   | 30.28       | _              |
| 153R              | -                | -      | -            | -                  | -             | 1.72                   | 8 21           | 1.61              | -      | 10.20       | 0.68           |
| 155D<br>153C      | -                | -      | -            | -                  | -             | 2.07                   | 0.21           | 1.01              | -      | 20.18       | 0.00           |
| 1530              | -                | -      | -            | -                  | -             | 15 11                  | -              | -                 | -      | 29.10       | -              |
| 155D              | -                | -      | -            | -                  | -             | 2.25                   | -              | -                 | -      | 29.99       | -              |
| 130A              | - 0.01           | 2.12   | -            | -                  | -             | 3.35                   | -              | -                 | -      | -           |                |
| 28A               | 0.01             | 2.15   | -            | -                  | -             | 22.49                  | -              | -                 | -      | -           | 0              |
| 28B               | -                | 0.72   | -            | -                  | -             | 0.5/                   | -              | -                 | -      | -           | -              |
| 34A<br>24D        | -                | 0.73   | -            | -                  | -             | 41.81                  | -              | -                 | -      | -           | -              |
| 34B               | -                | -      | -            | -                  | -             | 36.51                  | -              | -                 | -      | -           | -              |
| 43A               | 0.37             | -      | -            | -                  | 0.41          | -                      | -              | -                 | -      | -           | 6.66           |
| 43B               | 0.02             | -      | -            | -                  | 0.27          | 2.1                    | -              | -                 | -      | -           | -              |
| 48A               | -                |        |              |                    |               | 8.88                   | -              | -                 | -      |             | -              |



|                   | CRP <sup>1</sup> | Fallow | Hay<br>Grass | Hay In<br>Rotation | Hay<br>Legume | Irrigated              | Low<br>Residue | Other<br>Cropland | Rice | Row<br>Crop | Small<br>Grain |
|-------------------|------------------|--------|--------------|--------------------|---------------|------------------------|----------------|-------------------|------|-------------|----------------|
| MLRA <sup>2</sup> |                  |        |              |                    |               | Gg CO2 eq <sup>3</sup> |                |                   |      |             |                |
| 48B               | -                | -      | -            | -                  | -             | 4.16                   | -              | -                 | -    | -           | -              |
| 53A               | 0                | 0.01   | 0            | -                  | 0             | 0.91                   | -              | 0                 | -    | -           | 0              |
| 53B               | 0                | 0.2    | 0            | 0                  | 0             | -                      | -              | 0                 | -    | 0           | 0              |
| 53C               | 0                | -      | -            | -                  | 0             | 0.85                   | -              | -                 | -    | 0           | 0              |
| 55A               | 0                | -      | 0            | -                  | 0             | -                      | 0              | 0                 | -    | 0           | 0              |
| 55B               | 0                | -      | 0            | 0                  | 0             | 3.06                   | 0              | 0.06              | -    | 0.25        | 0.01           |
| 55C               | 0                | -      | 0            | 0.07               | 0             | 2.47                   | -              | 0                 | -    | 0.16        | 0              |
| 58A               | 0                | 6.32   | 0            | 0                  | 0             | 121.36                 | -              | 0                 | -    | -           | 0              |
| 58B               | -                | -      | -            | -                  | 0.01          | 2.36                   | -              | -                 | -    | -           | -              |
| 60A               | -                | 2.02   | -            | -                  | 0             | 0.08                   | -              | -                 | -    | -           | 0              |
| 63A               | 0                | 0      | 0            | -                  | 0             | -                      | -              | -                 | -    | 0           | 0              |
| 63B               | -                | -      | 0            | 0.01               | 0             | -                      | -              | 0                 | -    | 0           | 0              |
| 67A               | 0                | 15.64  | -            | -                  | 0             | 81.01                  | -              | -                 | -    | 0           | 0              |
| 67B               | 0                | 68.02  | -            | -                  | -             | 137.28                 | -              | 6.95              | -    | 0           | 0              |
| 70A               | -                | -      | -            | -                  | -             | 7.18                   | -              | -                 | -    | -           | -              |
| 70B               | -                | -      | -            | -                  | -             | 2.17                   | -              | -                 | -    | -           | -              |
| 70C               | -                | -      | -            | -                  | -             | 2.09                   | -              | -                 | -    | -           | -              |
| 77A               | 0                | 5.07   | -            | -                  | -             | 68.25                  | -              | 0.06              | -    | 0           | 0.01           |
| 77B               | 0                | -      | -            | -                  | -             | 11.32                  | -              | -                 | -    | -           | -              |
| 77C               | 0                | 4.4    | -            | -                  | -             | 123.35                 | 0.01           | 0.15              | -    | 0           | 0.18           |
| 77D               | 0                | -      | -            | -                  | _             | 5.09                   | _              | -                 | -    | -           | 0              |
| 77E               | 0                | 0.08   | -            | -                  | -             | 5.63                   | -              | -                 | -    | -           | 0.03           |
| 78A               | -                | -      | -            | -                  | -             | -                      | -              | -                 | -    | -           | 0              |
| 78B               | 0                | -      | -            | -                  | -             | 1.96                   | 0              | -                 | -    | -           | 0              |
| 78C               | 0                | 0.48   | -            | -                  | 0             | 5.31                   | 0.37           | 0                 | -    | 0           | 0.05           |
| 80A               | 0.02             | -      | 9.49         | -                  | 0.23          | 2.82                   | _              | -                 | -    | 3.7         | 47.01          |
| 80B               | -                | -      | -            | -                  | -             | -                      | -              | -                 | -    | -           | 0              |
| 81A               | -                | -      | -            | -                  | _             | 51.98                  | 0              | 0                 | -    | -           | 0              |
| 81B               | -                | -      | -            | -                  | _             | -                      | _              | -                 | -    | -           | 0              |
| 81C               | -                | -      | -            | -                  | -             | -                      | -              | -                 | -    | -           | 0              |
| 82B               | -                | -      | -            | -                  | -             | -                      | -              | -                 | -    | -           | 0              |
| 83A               | -                | -      | -            | -                  | -             | 8.33                   | -              | 0                 | -    | 0           | 0              |
| 83C               | -                | -      | -            | -                  | _             | _                      | _              | -                 | -    | 0           | -              |
| 83D               | -                | -      | -            | -                  | -             | 8.62                   | 0.75           | -                 | -    | 1.71        | -              |
| 83E               | -                | -      | -            | -                  | -             | -                      | -              | -                 | -    | 0           | -              |
| 84A               | -                | -      | 7.77         | -                  | -             | -                      | -              | -                 | -    | -           | 4.06           |
| 84B               | -                | -      | -            | -                  | -             | 1.85                   | -              | -                 | -    | -           | 1.51           |
| 86A               | -                | -      | 7.4          | -                  | -             | -                      | 2.21           | 1.4               | -    | 3.76        | 8.98           |
| 87A               | -                | -      | -            | -                  | -             | -                      | -              | -                 | -    | 4.43        | 0              |
| 87B               | -                | -      | -            | -                  | -             | -                      | -              | -                 | -    | -           | 1.94           |
| 90A               | -                | -      | 1.43         | 4.68               | 3.54          | _                      | _              | -                 | -    | 13.67       | -              |
| 90B               | 0.04             | -      | 1.17         | 5.78               | 2.89          | -                      | -              | 1.72              | -    | 21.84       | -              |
| 91A               | 0.18             | -      | _            | 1.5                | 0.96          | 14.08                  | _              | _                 | -    | 15.06       | -              |
| 91B               | -                | _      | -            | -                  | 0.74          | -                      | _              | _                 | -    | 5.79        | -              |
| 94A               | -                | _      | -            | _                  | 4.13          | _                      | _              | _                 | -    | 8.51        | _              |
| 94B               | -                | _      | -            | _                  | 1.07          | _                      | _              | _                 | -    | -           | _              |
| 95A               | 0.13             | _      | 0.64         | 13.18              | 3.69          | _                      | _              | 2.91              | _    | 43.96       | 1.53           |
| 95B               | 0.25             | _      | 0.6          | 9.76               | 3.11          | 3.18                   | _              | 2.92              | _    | 62.1        |                |

# Continued - Appendix Table B-4 MLRA-Level Estimates of Total Annual Indirect N<sub>2</sub>O Emissions for Nitrate Leaching by Major Crop Rotation, 2003-2007

Note: N<sub>2</sub>O is nitrous oxide. <sup>1</sup> CRP = Conservation Reserve Program

 $^{2}$  MLRA = Major Land Resource Area

 ${}^{3}$ Gg CO<sub>2</sub> eq. = Gigagrams carbon dioxide equivalent



### Appendix Table B-5 Rice Harvested Area, 1990, 1995, 2000-2013

|                   | 1990  | 1995  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006     | 2007  | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|
| State and<br>Crop |       |       |       |       |       |       |       | 1,000 | hectares |       |       |       |       |       |       |       |
| Arkansas          | 1,200 | 1,340 | 1,410 | 1,621 | 608   | 589   | 629   | 1637  | 1400     | 1325  | 1395  | 1470  | 1785  | 1154  | 1414  | 1124  |
| Primary           | 1,200 | 1,340 | 1,410 | 1,621 | 1,503 | 1,455 | 1,555 | 1,635 | 1,400    | 1,325 | 1,395 | 1,470 | 1,785 | 1,154 | 1,285 | 1,070 |
| Ratoon            | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 2     | 0        | 0     | 0     | 0     | 0     | 0     | 129   | 54    |
| California        | 395   | 465   | 548   | 471   | 528   | 507   | 590   | 526   | 523      | 533   | 517   | 556   | 553   | 580   | 557   | 561   |
| Florida           | 18    | 36    | 27    | 18    | 19    | 12    | 16    | 11    | 15       | 20    | 18    | 20    | 19    | 26    | 22    | 22    |
| Primary           | 12    | 24    | 19    | 11    | 13    | 6     | 9     | 11    | 11       | 15    | 13    | 14    | 13    | 20    | 15    | 17    |
| Ratoon            | 6     | 12    | 8     | 7     | 7     | 6     | 7     | 0     | 3        | 5     | 4     | 6     | 6     | 6     | 7     | 5     |
| Louisiana         | 709   | 741   | 672   | 710   | 615   | 608   | 693   | 593   | 414      | 510   | 650   | 626   | 749   | 564   | 556   | 570   |
| Primary           | 545   | 570   | 480   | 546   | 535   | 450   | 533   | 525   | 345      | 378   | 464   | 464   | 535   | 418   | 397   | 413   |
| Ratoon            | 164   | 171   | 192   | 164   | 80    | 158   | 160   | 68    | 69       | 132   | 186   | 162   | 214   | 146   | 159   | 157   |
| Mississippi       | 250   | 288   | 218   | 253   | 253   | 234   | 234   | 263   | 189      | 189   | 229   | 243   | 303   | 157   | 129   | 124   |
| Missouri          | 80    | 112   | 169   | 207   | 182   | 171   | 195   | 214   | 214      | 178   | 199   | 200   | 251   | 128   | 177   | 156   |
| Texas             | 494   | 445   | 321   | 302   | 282   | 248   | 294   | 255   | 209      | 197   | 263   | 269   | 290   | 319   | 216   | 242   |
| Primary           | 353   | 318   | 214   | 216   | 206   | 180   | 218   | 201   | 150      | 145   | 172   | 170   | 188   | 180   | 134   | 144   |
| Ratoon            | 141   | 127   | 107   | 86    | 76    | 68    | 76    | 54    | 59       | 52    | 91    | 99    | 102   | 139   | 82    | 98    |
| Total             | 3,146 | 3,427 | 3,365 | 3,582 | 2,488 | 2,368 | 2,652 | 3,499 | 2,963    | 2,953 | 3,270 | 3,384 | 3,949 | 2,928 | 3,070 | 2,798 |

Appendix Table B-6 Total U.S. Production of Crops Managed with Burning, 1990, 1995, 2000-2013

|           | 1990   | 1995   | 2000   | 2001   | 2002   | 2003   | 2004   | 2005    | 2006       | 2007   | 2008   | 2009   | 2010   | 2011   | 2012   | 2013   |
|-----------|--------|--------|--------|--------|--------|--------|--------|---------|------------|--------|--------|--------|--------|--------|--------|--------|
| Crop      |        |        |        |        |        |        |        | 1,000 M | etric tons |        |        |        |        |        |        |        |
| Wheat     | 2,200  | 1,788  | 1,949  | 1,666  | 1,425  | 1,615  | 1,482  | 1,405   | 1,316      | 1,598  | 2,210  | 1,664  | 1,607  | 1,865  | 1,807  | 1,841  |
| Rice      | 723    | 783    | 830    | 844    | 857    | 751    | 904    | 607     | 744        | 1,097  | 813    | 889    | 922    | 823    | 825    | 804    |
| Sugarcane | 15,040 | 12,971 | 13,017 | 12,190 | 13,068 | 16,631 | 10,638 | 6,234   | 14,951     | 7,153  | 9,776  | 10,207 | 9,428  | 10,631 | 10,914 | 10,481 |
| Corn      | 412    | 406    | 554    | 514    | 488    | 552    | 465    | 361     | 691        | 630    | 661    | 703    | 693    | 710    | 693    | 875    |
| Cotton    | 43     | 50     | 48     | 58     | 47     | 63     | 74     | 70      | 43         | 35     | 39     | 35     | 49     | 51     | 53     | 41     |
| Soybeans  | 129    | 128    | 146    | 154    | 147    | 93     | 128    | 192     | 182        | 189    | 187    | 217    | 198    | 180    | 187    | 210    |
| Lentil    | 1      | 2      | 2      | 2      | 2      | 0      | 0      | 1       | 2          | 2      | 1      | 2      | 2      | 1      | 1      | 2      |
| Total     | 18,548 | 16,128 | 16,547 | 15,428 | 16,034 | 19,705 | 13,692 | 8,870   | 17,929     | 10,703 | 13,688 | 13,717 | 12,899 | 14,261 | 14,481 | 14,253 |



|      | Corn   | Soybeans   | Cotton | Wheat  | Lentils | Rice   | Sugarcane  |
|------|--------|------------|--------|--------|---------|--------|------------|
| Year |        | 1,000 bush | bels   |        | 1,00    | 0 cwt  | 1,000 tons |
| 1990 | 16,227 | 4,725      | 195    | 80,847 | 23      | 15,937 | 16,578     |
| 1991 | 15,867 | 4,779      | 229    | 53,075 | 41      | 16,488 | 16,185     |
| 1992 | 19,388 | 5,552      | 214    | 68,820 | 0       | 17,740 | 15,414     |
| 1993 | 13,867 | 4,523      | 207    | 71,653 | 47      | 16,088 | 15,703     |
| 1994 | 20,809 | 5,943      | 250    | 67,555 | 39      | 19,773 | 15,354     |
| 1995 | 15,987 | 4,689      | 230    | 65,713 | 44      | 17,259 | 14,298     |
| 1996 | 21,705 | 5,519      | 250    | 79,415 | 27      | 17,472 | 13,434     |
| 1997 | 21,489 | 6,211      | 248    | 72,633 | 45      | 17,613 | 13,983     |
| 1998 | 21,801 | 5,701      | 174    | 74,146 | 34      | 16,771 | 14,965     |
| 1999 | 20,587 | 5,515      | 224    | 68,424 | 40      | 18,234 | 14,118     |
| 2000 | 21,810 | 5,379      | 219    | 71,629 | 51      | 18,290 | 14,348     |
| 2001 | 20,222 | 5,676      | 264    | 61,199 | 50      | 18,609 | 13,437     |
| 2002 | 19,230 | 5,398      | 217    | 52,342 | 45      | 18,902 | 14,404     |
| 2003 | 21,747 | 3,402      | 291    | 59,323 | 0       | 16,555 | 18,333     |
| 2004 | 18,308 | 4,716      | 341    | 54,453 | 10      | 19,928 | 11,726     |
| 2005 | 14,213 | 7,048      | 320    | 51,631 | 20      | 13,390 | 6,872      |
| 2006 | 27,211 | 6,688      | 199    | 48,348 | 49      | 16,394 | 16,481     |
| 2007 | 24,791 | 6,942      | 160    | 58,702 | 45      | 24,194 | 7,884      |
| 2008 | 26,033 | 6,867      | 180    | 81,195 | 24      | 17,933 | 10,776     |
| 2009 | 27,662 | 7,975      | 162    | 61,150 | 41      | 19,601 | 11,251     |
| 2010 | 27,292 | 7,266      | 227    | 59,057 | 34      | 20,320 | 10,393     |
| 2011 | 27,944 | 6,601      | 232    | 68,532 | 32      | 18,150 | 11,718     |
| 2012 | 27,291 | 6,882      | 241    | 66,412 | 32      | 18,179 | 12,031     |
| 2013 | 34,442 | 7,733      | 186    | 67,653 | 35      | 17,716 | 11,553     |

### Appendix Table B-7 Production of Crops Managed with Burning

## Appendix Table B-8(a) Crop Assumptions and Coefficients

| Assumption/Coefficient  | Corn  | Cotton | Lentils | Rice  | Soybean | Sugarcane | Wheat |
|-------------------------|-------|--------|---------|-------|---------|-----------|-------|
| Residue/Crop Ratio      | 1.0   | 1.6    | 2.0     | 1.4   | 2.1     | 0.2       | 1.3   |
| Fraction Residue Burned | 0.00  | 0.01   | 0.01    | 0.09  | 0.00    | 0.37      | 0.03  |
| Fraction Dry Matter     | 0.91  | 0.90   | 0.85    | 0.91  | 0.45    | 0.62      | 0.93  |
| Burning Efficiency      | 0.93  | 0.93   | 0.93    | 0.93  | 0.93    | 0.81      | 0.93  |
| Combustion Efficiency   | 0.88  | 0.88   | 0.88    | 0.88  | 0.88    | 0.68      | 0.88  |
| Fraction Carbon         | 0.45  | 0.45   | 0.45    | 0.38  | 0.45    | 0.42      | 0.44  |
| Fraction Nitrogen       | 0.006 | 0.012  | 0.023   | 0.007 | 0.023   | 0.004     | 0.006 |

#### Appendix Table B-8(b)

## Emissions Factors and Global Warming Potentials

| GHG                      | Factor & GWP |
|--------------------------|--------------|
| Emissions Factor         |              |
| Methane                  | 0.005        |
| Nitrous Oxide            | 0.007        |
| Global Warming Potential |              |
| Methane                  | 25           |
| Nitrous Oxide            | 298          |

## Appendix Table B-8(c) Rice Area Burned by State

| State       | % Burned |
|-------------|----------|
| Arkansas    | 6        |
| California  | 16       |
| Florida     | 84       |
| Louisiana   | 2        |
| Mississippi | 2        |
| Missouri    | 3        |
| Oklahoma    | 100      |
| Texas       | 26       |



|      | Cold Temperate | Warm Temperate   | Sub-Tropical |
|------|----------------|------------------|--------------|
| Year |                | Million hectares |              |
| 1990 | 0.72           | 0.17             | 0.30         |
| 1991 | 0.72           | 0.17             | 0.30         |
| 1992 | 0.71           | 0.17             | 0.30         |
| 1993 | 0.70           | 0.16             | 0.30         |
| 1994 | 0.70           | 0.17             | 0.30         |
| 1995 | 0.69           | 0.17             | 0.29         |
| 1996 | 0.69           | 0.17             | 0.29         |
| 1997 | 0.68           | 0.16             | 0.28         |
| 1998 | 0.68           | 0.17             | 0.28         |
| 1999 | 0.67           | 0.17             | 0.28         |
| 2000 | 0.67           | 0.17             | 0.28         |
| 2001 | 0.65           | 0.16             | 0.28         |
| 2002 | 0.64           | 0.16             | 0.28         |
| 2003 | 0.63           | 0.16             | 0.26         |
| 2004 | 0.63           | 0.17             | 0.26         |
| 2005 | 0.63           | 0.17             | 0.26         |
| 2006 | 0.62           | 0.16             | 0.26         |
| 2007 | 0.62           | 0.16             | 0.26         |
| 2008 | 0.62           | 0.16             | 0.26         |
| 2009 | 0.62           | 0.16             | 0.26         |
| 2010 | 0.62           | 0.16             | 0.26         |
| 2011 | 0.62           | 0.16             | 0.26         |
| 2012 | 0.62           | 0.16             | 0.26         |
| 2013 | 0.62           | 0.16             | 0.26         |

### Appendix Table B-9 Cultivated Histosol (Organic Soils) Area

Appendix Table B-10 Carbon Loss Rates from Organic Soils Under Agricultural Management in the United States

|                 | Cropland       | Grassland <sup>1</sup> |
|-----------------|----------------|------------------------|
| Climate Regions | Metric Ton     | ns C/ha-yr²            |
| CTD & CTM       | $11.2 \pm 2.5$ | $2.8 \pm 0.51$         |
| WTD & WTM       | $14.0 \pm 2.5$ | $3.5 \pm 0.81$         |
| STD & STM       | $14.0 \pm 3.3$ | $3.5 \pm 0.81$         |

<sup>1</sup>There is not enough data available to estimate values for C losses from grasslands. Estimates are 25% of the values for cropland (the IPCC default organic soil C losses on grasslands). <sup>2</sup>Metric Tons C/ha-yr is metric tons carbon per hectare per year

Climate regions: Cold temperate dry (CTD), cold temperate moist (CTM), warm temperate dry (WTD), warm temperate moist (WTM), subtropical temperate dry (STD), and subtropical temperate moist (STM).



## Appendix Table B-11 MLRA-Level Estimates of Annual Soil Carbon Stock Changes by Major Crop Rotation, 2003-2007

|                   | CDD     | Fallow | Hay    | Hay in<br>Potation | Hay     | Imicatod                            | Low     | Other    | Diag   | Row     | Small  |
|-------------------|---------|--------|--------|--------------------|---------|-------------------------------------|---------|----------|--------|---------|--------|
|                   | CKP     | Fallow | Grass  | Rotation           | Legume  | Imgated                             | Residue | Cropiand | Rice   | Crop    | Grain  |
| MLRA <sup>2</sup> |         |        |        |                    | (       | лд С.О <sub>2</sub> еq <sup>э</sup> |         |          | ,      | ,       |        |
| 2                 | -       | -      | -70.12 | -51.24             | -8.29   | -26.48                              | -       | -        | -      | -       | 138.63 |
| 5                 | -       | -      | -      | -                  | -       | -20.86                              | -       | -        | -      | -       | -      |
| 7                 | -28.27  | 22.35  | -      | -                  | -       | -108.18                             | -       | -        | -      | -       | -      |
| 8                 | -475.31 | 451.85 | -      | -                  | -       | 26.86                               | -       | -8.69    | -      | -       | 39.80  |
| 9                 | -114.61 | 45.01  | -      | -                  | -30.13  | -27.99                              | -       | -        | -      | -       | -5.09  |
| 10                | -       | 34.36  | -      | -                  | 2.26    | -104.39                             | -       | -        | -      | -       | -      |
| 11                | -       | 68.57  | -      | -                  | -       | -301.58                             | -       | -        | -      | -       | -      |
| 12                | -       | -      | -      | -                  | -       | -26.00                              | -       | -        | -      | -       | -      |
| 13                | -229.48 | 25.07  | -      | -28.04             | -32.45  | -32.14                              | -       | -        | -      | -       | 20.15  |
| 14                | -       | -      | 6.07   | -                  | -       | -8.43                               | -       | -        | -      | -       | -      |
| 15                | -       | -      | -      | -                  | -       | 45.11                               | -       | 11.81    | -      | -       | -      |
| 16                | -       | -      | -      | -                  | -       | 3.40                                | -       | -        | -      | -       | -      |
| 17                | -       | -36.65 | -      | -                  | -       | -204.68                             | -       | -83.22   | -45.45 | -       | -      |
| 21                | -       | -      | -      | -                  | -       | -151.58                             | -       | -        | -      | -       | -      |
| 23                | -       | -      | -      | -                  | -       | -52.73                              | -       | -        | -      | -       | -      |
| 24                | -       | -      | -      | -                  | -       | 28.77                               | -       | -        | -      | -       | -      |
| 25                | -       | -      | -      | -                  | -       | -62.43                              | -       | -        | -      | -       | -      |
| 26                | -       | -      | -      | -                  | -       | 2.79                                | -       | -        | -      | -       | -      |
| 27                | -       | -      | -      | -                  | -       | 15.22                               | -       | 1.52     | -      | -       | -      |
| 29                | -       | -      | -      | -                  | -       | -1.22                               | -       | -        | -      | -       | -      |
| 30                | -       | -      | -      | -                  | -       | 42.72                               | -       | -        | -      | -       | -      |
| 31                | -       | 9.77   | -      | -                  | -       | -178.61                             | -       | -11.16   | -      | -       | -      |
| 32                | -       | -      | -      | -                  | -       | 9.25                                | -       | -        | -      | -       | -      |
| 35                | -       | -      | -      | -                  | -       | 21.75                               | -       | -        | -      | -       | -      |
| 36                | -21.25  | 45.04  | -      | -                  | -       | -67.94                              | -       | -        | -      | -       | 11.49  |
| 40                | -       | -      | -      | -                  | -       | -68.82                              | -       | -12.77   | -      | -       | -      |
| 41                | -       | -      | -      | -                  | -       | 3.16                                | -       | -        | -      | -       | -      |
| 42                | -       | -      | -      | -                  | -       | -59.03                              | -       | -33.71   | -      | -       | -      |
| 44                | -       | 393.32 | -12.05 | -                  | -49.58  | -258.94                             | -       | -        | -      | -       | 6.42   |
| 46                | -111.35 | 125.28 | -      | -                  | -132.05 | -136.05                             | -       | -        | -      | -       | 101.95 |
| 47                | -       | -      | -      | -                  | -       | -10.42                              | -       | -        | -      | -       | -      |
| 49                | -       | -3.14  | -      | -                  | -       | -9.77                               | -       | -        | -      | -       | -      |
| 51                | -       | -      | -      | -                  | -       | -61.89                              | -       | -        | -      | -       | -      |
| 52                | -779.05 | 605.59 | -      | -                  | -6.52   | -91.50                              | -       | -        | -      | -       | 8.81   |
| 54                | -301.28 | 62.66  | -68.94 | -72.72             | -182.95 | -10.54                              | -       | -19.34   | -      | 156.46  | 624.19 |
| 56                | -393.54 | -      | -50.30 | -31.54             | -66.27  | -                                   | 59.18   | -91.94   | -      | 52.14   | 188.52 |
| 57                | -       | -      | -      | -27.91             | -45.85  | -                                   | -       | -        | -      | 139.63  | -      |
| 61                | -       | -      | -      | -                  | -16.91  | -                                   | -       | -        | -      | -       | -      |
| 64                | -33.96  | 54.68  | -      | -                  | 15.97   | 46.81                               | -       | -        | -      | 8.35    | 29.18  |
| 65                | -       | -      | -      | -                  | 0.96    | -36.55                              | -       | -        | -      | -       | -      |
| 66                | -       | -      | -25.82 | -36.18             | -45.11  | -8.35                               | -       | -        | -      | 73.04   | 73.46  |
| 69                | -29.23  | 67.57  | -      | _                  | -       | -11.02                              | -       | -        | -      | -       | -      |
| 71                | -20.62  | -      | -43.96 | _                  | 2.83    | -202.00                             | -       | -        | -      | 35.88   | -      |
| 72                | -836.33 | 94.11  | -      | _                  | 2.42    | -397.37                             | -       | -157.74  | -      | -102.42 | -38.35 |
| 73                | -374.53 | 85.94  | -36.66 | -51.24             | -105.80 | -190.42                             | -       | -139.99  | -      | -287.90 | 102.64 |



\_

# Continued - Appendix Table B-11 MLRA-Level Estimates of Annual Soil Carbon Stock Changes by Major Crop Rotation, 2003-2007

|                   | CDD1    | <b>T</b> -11 | Hay     | Hay in   | Hay     | Turte etc. 1                       | Low     | Other    | <b>D</b> ' | Row      | Small  |
|-------------------|---------|--------------|---------|----------|---------|------------------------------------|---------|----------|------------|----------|--------|
|                   | CRP     | Fallow       | Grass   | Rotation | Legume  | Irrigated                          | Residue | Cropland | Rice       | Crop     | Grain  |
| MLRA <sup>2</sup> |         |              |         |          | (       | Gg CO <sub>2</sub> eq <sup>3</sup> |         |          |            |          |        |
| 74                | -106.62 | 3.42         | -34.08  | -43.80   | -69.67  | -34.28                             | -       | -1.35    | -          | -135.07  | -50.70 |
| 75                | -24.67  | 27.78        | -       | -        | -26.06  | -292.06                            | -       |          | -          | -105.09  | 31.51  |
| 76                | -11.55  | -            | -90.58  | -43.21   | 0.76    | -                                  | -       |          | -          | -68.35   | -17.90 |
| 79                | -158.58 | 21.20        | -       | -        | -13.71  | -89.44                             | -       | -36.66   | -          | 11.47    | 36.63  |
| 85                | -       | -7.59        | -       | -        | -       | -                                  | -       |          | -          | -6.13    | 41.48  |
| 89                | -       | -            | -       | -7.26    | -17.43  | -4.25                              | -       |          | -          | 34.16    | -      |
| 92                | -       | -            | -       | -        | -5.64   | -                                  | -       |          | -          | -        | -      |
| 96                | -       | -            | -10.17  | -        | -5.02   | -                                  | -       |          | -          | -        | -      |
| 97                | -       | -            | -       | -        | -25.50  | 0.43                               | -       | -        | -          | 33.05    | -      |
| 98                | -25.60  | -            | -149.12 | -71.61   | -117.86 | -29.92                             | -       | -43.76   | -          | 254.51   | -0.34  |
| 99                | -59.30  | -            | -       | -8.47    | -69.85  | -                                  | 8.93    | -42.31   | -          | -341.12  | 0.66   |
| 101               | -       | -            | -208.72 | -151.89  | -132.42 | -                                  | -       | -12.25   | -          | 564.32   | 31.34  |
| 103               | -261.57 | -            | -79.35  | -141.55  | -204.04 | -                                  | -       | -46.74   | _          | -1330.07 | -      |
| 104               | -48.86  | _            | -26.46  | -70.52   | -52.20  | -                                  | -       | -57.57   | _          | -148.27  | -      |
| 105               | -76.07  | _            | -145.52 | -251.91  | -218.28 | -5.18                              | _       | -77.80   | _          | 1765.92  | -      |
| 106               | -166.86 | _            | -142.90 | -70.08   | -36.34  | -37.82                             | _       | -24.39   | _          | 107.31   | 34.50  |
| 109               | -381.42 | _            | -398.82 | -109.29  | -92.63  | _                                  | _       | -2.28    | _          | 381.66   | -      |
| 110               |         |              |         | -25 35   | , 2.05  | _                                  | _       | -17 17   | _          | -170.01  | _      |
| 112               | -76.11  |              | -509.05 | _77.42   | -62.64  | -29.33                             |         | -56.58   |            | -5.98    | 162.67 |
| 112               | 107.14  |              | 176.22  | 100.78   | 36.61   | 7.48                               |         | 45.43    |            | 371.00   | 5.06   |
| 121               | -17/.14 |              | 254.48  | 25.46    | -30.01  | -7.40                              |         |          |            | 161.04   | -5.00  |
| 121               | 0.07    |              | -257.70 | 76.30    | 52.51   |                                    | 16.13   |          |            | 74.76    | 10.64  |
| 122               | 0.97    |              | -303.21 | -70.50   | -52.51  | _                                  | 10.15   | _        | -          | 16.04    | 10.04  |
| 123               | -       | -            | -97.00  | 116 52   | -9.77   | -                                  | -       | 0 10     | -          | 224.54   | -      |
| 124               | -       | _            | -201.75 | -110.55  | -02.73  | -                                  | -       | -6.10    | -          | 224.54   | -      |
| 125               | -       | _            | -44.28  | -        | -14.88  | -                                  | -       | -        | -          | 3.57     | -      |
| 120               | -       | _            | -382.31 | -54.04   | -34.99  | -                                  | -       | -        | -          | 89.01    | -      |
| 127               | -       | -            | -223.34 | -25.43   | -4.00   | -                                  | -       | -2.89    | -          | 123.64   | -      |
| 128               | -       | -            | -23/.2/ | -53./2   | -1.28   | -                                  | -27.85  | -15.25   | -          | -52.55   | -      |
| 129               | -       | -            | -/1./6  | -        | -       | -                                  | -       | -        | -          | -28.63   | -      |
| 134               | -166.05 | 3.18         | -400.19 | -        | -       | -43.20                             | 112.47  | -56.42   | -63.30     | 97.66    | 57.89  |
| 136               | -2.21   | -            | -598.39 | -95.46   | -4.84   | -                                  | -5.88   | -32.00   | -          | 26.17    | -17.77 |
| 137               | -       | -            | -43.19  | -        | -       | -                                  | 11.00   | -9.23    | -          | 0.06     | -      |
| 138               | -       | -            | -       | -        | -       | 16.47                              | -       | _        | -          | -        | -      |
| 139               | -       | -            | -170.99 | 25.09    | -85.79  | -                                  | -       | -4.14    | -          | 452.66   | -      |
| 140               | -       | -            | -797.59 | -141.40  | -100.87 | -                                  | -       | 41.43    | -          | 389.66   | -      |
| 142               | -       | -            | -263.65 | 43.18    | -23.10  | -                                  | -       | -        | -          | 190.71   | -      |
| 143               | -       | -            | -60.88  | -        | 3.91    | -                                  | -       |          | -          | -        | -      |
| 145               | -       | -            | -28.93  | -        | -       | -                                  | -       |          | -          | 6.09     | -      |
| 146               | -       | -            | -       | -        | -       | -                                  | 10.22   | -        | -          | -        | -      |
| 147               | -       | -            | -473.16 | -117.76  | -99.80  | -                                  | -       | -20.37   | -          | 211.03   | 12.86  |
| 148               | -       | -            | -246.28 | -115.53  | -73.11  | -                                  | -       | -16.10   | -          | 157.62   | 12.23  |
| 155               | -       | -            | -       | -        | -       | 257.16                             | -       |          | -          | -        | -      |
| 102A              | -271.08 | -            | -157.73 | -113.15  | -145.54 | -11.37                             | -       | -43.49   | -          | 585.51   | 86.65  |
| 102B              | -       | -            | =       | -        | -53.30  | -                                  | -       | -        | -          | 19.51    | -      |
| 102C              | -96.36  | -            | -60.82  | -264.58  | -134.97 | -161.97                            | -       | -        | -          | 263.53   | -      |
| 107A              | -       | -            | -       | -        | -       | -                                  | -       | -59.66   | -          | -588.16  | -      |
| 107B              | -112.86 | -            | -194.55 | -73.20   | 11.66   | -70.96                             | -       |          | -          | 81.59    | 10.08  |



|                   | CDD1    | Fallerr | Hay     | Hay in   | Hay       | Indexed                | Low     | Other<br>Crowland | Dias    | Row     | Small |
|-------------------|---------|---------|---------|----------|-----------|------------------------|---------|-------------------|---------|---------|-------|
|                   | CRP     | Fallow  | Grass   | Rotation | Legume    | Irrigated              | Residue | Cropland          | Rice    | Crop    | Grain |
| MLRA <sup>2</sup> |         |         |         |          | (         | лg CO2 еq <sup>3</sup> |         |                   |         |         |       |
| 108A              | -       | -       | -       | -        | -27.37    | -                      | -       | _                 | -       | -684.44 | -     |
| 108B              | -22.83  | -       | -       | -        | -48.00    | -14.05                 | -       | _                 | -       | -664.44 | -     |
| 108C              | -108.02 | -       | -82.35  | -109.41  | -60.60    | -                      | -       | -64.58            | -       | -76.91  | -     |
| 108D              | -135.78 | -       | -54.02  | -63.29   | -78.07    | -                      | -       | _                 | -       | 160.50  | -     |
| 111A              | -       | -       | -49.79  | -        | -38.49    | -                      | -       | _                 | -       | -604.97 | -     |
| 111B              | -139.76 | -       | -41.53  | -95.91   | -115.07   | -3.48                  | -       | -23.36            | -       | -337.17 | 2.26  |
| 111C              | -       | -       | -       | -        | -         | -                      | -       | -                 | -       | -166.24 | -     |
| 111D              | -       | -       | -       | -        | -11.34    | -                      | -       | -                 | -       | -305.93 | -     |
| 111E              | -       | -       | -       | -28.22   | -12.70    | -                      | -       | -15.78            | -       | -19.53  | -     |
| 114A              | -       | -       | -45.41  | -29.87   | -40.78    | -                      | -       | _                 | -       | -5.10   | -     |
| 114B              | -28.18  | -       | -50.38  | -64.39   | -23.50    | -                      | -       | _                 | -       | -93.95  | 8.67  |
| 115A              | _       | _       | -       | -        | -25.24    | -10.19                 | -       | _                 | -       | -150.93 | -1.53 |
| 115B              | -5.73   | _       | -137.00 | -        | -8.37     | -                      | -       | -17.45            | -       | 188.33  | 2.78  |
| 115C              | -141.68 | -       | -161.42 | -124.31  | -63.79    | -33.52                 | -       | -29.00            | -       | -236.21 | -     |
| 116A              | _       | _       | -389.87 | -        | -3.71     | -                      | -       | _                 | -       | 72.85   | -     |
| 116B              | _       | _       | -204.67 | _        | -2.14     | -                      | -       | _                 | _       | -14.52  | 10.69 |
| 118A              | _       | _       | -34.22  | _        |           | -                      | -       | _                 | _       | 13.67   | 25.30 |
| 120A              | -77.78  | _       | -88.49  | -15.90   | -61.84    | _                      | _       | _                 | _       | 86.66   |       |
| 120H              |         | _       | -28.33  |          | 01101     | _                      | _       | _                 | _       | 74 72   | _     |
| 120D              |         |         | 20.55   |          |           |                        |         |                   |         | 20.07   | _     |
| 120C              |         |         |         |          |           |                        |         |                   |         | 7.02    |       |
| 130R              |         |         | 36.60   |          | 2 47      |                        |         |                   |         | 7.02    | -     |
| 1314              | 1/3 6/  | 31.50   | -50.00  | _        | -2.47     | 160.00                 | 51.44   | 04 58             | 147.02  | 157.84  | 2 5 2 |
| 131A<br>121B      | -143.04 | 24.62   | -30.70  | -        | -         | -109.09                | -31.44  | -94.30            | -14/.92 | -137.04 | 2.32  |
| 1210              | -       | 24.03   | -       | -        | -         | -/4.50                 | 20.45   | _                 | 0.74    | -4.21   | -     |
| 121D              | _       | _       | -       | -        |           | -1.03                  | 20.45   | -                 | -24.07  | -31.29  | -     |
| 131D              | 255.02  | 2.07    | 201 70  | 10.10    | -<br>- 10 | -20.51                 | -       | -                 | -32.12  |         | -     |
| 133A              | -255.83 | 3.07    | -381.70 | -19.18   | -5.18     | -61.68                 | 511.97  | -116.96           | -       | -220.33 | 34.95 |
| 133B              | -       | -       | -84.70  | -        | -         | -                      | -       | -                 | -       | 6./1    | -8.40 |
| 135A              | -113.56 | -       | -152.23 | -        | -         | -                      | 64.28   | -8.68             | -       | 37.88   | -     |
| 144A              | -       | -       | -286.27 | -18.80   | -9.27     | -                      | 22.36   | 17.96             | -       | 66.03   | -     |
| 144B              | -       | -       | -209.49 | -6.96    | 13.30     | -                      | -       | _                 | -       | 57.60   | -     |
| 149A              | -       | -       | -20.38  | -        | -         | 3.22                   | -       | _                 | -       | -14.48  | -     |
| 150A              | -       | -       | -       | -        | -         | -74.64                 | 40.85   | -230.29           | -274.07 | 8.79    | -     |
| 150B              | -       | -       | -       | -        | -         | -                      | -       | _                 | -13.89  | -       | -     |
| 152B              | -       | -       | -       | -        | -         | -                      | -       | -9.24             | -18.58  | -       | -     |
| 153A              | -       | -       | -       | -        | -         | 6.39                   | 46.57   | -18.92            | -       | -57.92  | -     |
| 153B              | -       | -       | -       | -        | -         | -2.75                  | 19.33   | -2.79             | -       | -51.59  | -2.21 |
| 153C              | -       | -       | -       | -        | -         | -5.00                  | -       | -                 | -       | -103.18 | -     |
| 153D              | -       | -       | -       | -        | -         | -16.18                 | -       | _                 | -       | -89.81  | -     |
| 156A              | -       | -       | -       | -        | -         | -4.73                  | -       | _                 | -       | -       | -     |
| 28A               | -144.74 | 68.02   | -       | -        | -         | 86.86                  | -       | -                 | -       | -       | -3.94 |
| 28B               | -       | -       | -       | -        | -         | -24.73                 | -       | _                 | -       | -       | -     |
| 34A               | -       | 6.98    | -       | -        | -         | -44.60                 | -       | _                 | -       | -       | -     |
| 34B               | -       | -       | -       | -        | -         | -166.44                | -       | _                 | -       | -       | -     |
| 43A               | -32.45  | -       | -       | -        | -18.89    | -                      | -       | _                 | -       | -       | -7.99 |
| 43B               | -44.82  | -       | -       | -        | -33.34    | -84.18                 | -       | _                 | -       | -       | -     |
| 48A               | -       | _       | -       | -        | -         | -42.60                 | -       | _                 | -       | _       | -     |

# Continued - Appendix Table B-11 MLRA-Level Estimates of Annual Soil Carbon Stock Changes by Major Crop Rotation, 2003-2007



\_ \_

# Continued - Appendix Table B-11 MLRA-Level Estimates of Annual Soil Carbon Stock Changes by Major Crop Rotation, 2003-2007

|                   | CDDI     | Fallow | Hay       | Hay in   | Hay     | Indented   | Low     | Other    | Dias | Row    | Small   |
|-------------------|----------|--------|-----------|----------|---------|------------|---------|----------|------|--------|---------|
|                   | CRP      | Fallow | Grass     | Rotation | Legume  | Irrigated  | Residue | Cropland | Rice | Crop   | Grain   |
| MLRA <sup>2</sup> |          |        |           |          | (       | ⊿g CO2 eq³ |         |          |      |        |         |
| 48B               | -        | -      | -         | -        | -       | -30.46     | -       | -        | -    | -      | -       |
| 53A               | -261.68  | 48.12  | -22.89    | -        | -9.27   | 10.27      | -       | -54.07   | -    | -      | 35.87   |
| 53B               | -490.83  | 48.86  | -57.97    | -51.31   | -58.63  | -          | -       | -24.26   | -    | -48.40 | 306.94  |
| 53C               | -42.62   | -      | -         | -        | -8.54   | -12.67     | -       | -        | -    | 0.80   | 4.48    |
| 55A               | -395.12  | -      | -28.37    | -        | -12.58  | -          | 10.60   | -109.10  | -    | -36.38 | -238.89 |
| 55B               | -555.38  | -      | -81.86    | -121.22  | -68.73  | -2.91      | 11.72   | -118.28  | -    | 139.71 | 124.65  |
| 55C               | -67.77   | -      | -38.23    | -126.31  | -131.55 | 5.32       | -       | 12.07    | -    | 332.56 | -13.41  |
| 58A               | -636.19  | 253.83 | -77.55    | -103.82  | -145.15 | -117.02    | -       | 17.25    | -    | -      | 27.75   |
| 58B               | -        | -      | -         | -        | -1.80   | -12.88     | -       | -        | -    | -      | -       |
| 60A               | -        | 104.77 | -         | -        | -10.78  | -0.51      | -       | -        | -    | -      | 25.50   |
| 63A               | -111.53  | 250.41 | -65.13    | -        | -15.81  | -          | -       | -        | -    | 33.68  | 80.83   |
| 63B               | -        | -      | -39.74    | -29.38   | -102.88 | -          | -       | 24.92    | -    | -11.30 | -5.73   |
| 67A               | -84.50   | 19.56  | -         | -        | -6.43   | -133.51    | -       | -        | -    | 2.66   | 1.54    |
| 67B               | -471.14  | 167.05 | -         | -        | -       | -165.70    | -       | -8.13    | -    | -59.18 | -5.61   |
| 70A               | -        | -      | -         | -        | -       | 4.50       | -       | -        | -    | -      | -       |
| 70B               | -        | -      | -         | -        | -       | -24.81     | -       | -        | -    | -      | -       |
| 70C               | -        | -      | -         | -        | -       | -6.25      | -       | -        | -    | -      | -       |
| 77A               | -285.26  | -36.94 | -         | -        | -       | -94.78     | -       | -7.82    | -    | -62.84 | 87.54   |
| 77B               | -4.20    | -      | -         | -        | -       | 65.74      | -       | -        | -    | -      | -       |
| 77C               | -1117.36 | -8.72  | -         | -        | -       | -226.05    | -146.43 | -14.83   | -    | -12.06 | 69.76   |
| 77D               | -120.01  | _      | -         | -        | -       | 14.44      | -       | _        | -    | -      | 12.30   |
| 77E               | -342.86  | 8.80   | -         | -        | _       | -0.45      | -       | -        | -    | -      | 19.19   |
| 78A               | _        | _      | -         | -        | _       | · · · ·    | -       | _        | -    | -      | -18.50  |
| 78B               | -366.82  | _      | _         | _        | _       | 4.45       | -26.34  | _        | _    | _      | 91.79   |
| 78C               | -168.58  | -24.60 | _         | _        | 0.74    | -36.84     | -4.65   | 15.37    | _    | -13.46 | 44.24   |
| 80A               | -37.84   |        | -47.28    | _        | -65.41  | -38 49     |         | _        | -    | -16.85 | 6.57    |
| 80B               |          | _      | -         | _        | -       | -          | _       | _        | -    | -      | 28.13   |
| 81 A              |          | _      | _         | _        |         | 14 19      | -9.94   | -47 43   | _    | _      | 1 23    |
| 81B               |          |        |           |          |         | 1 1.17     |         | 17.15    | _    |        | 5.65    |
| 81C               |          |        |           |          |         |            |         |          | _    |        | 4 64    |
| 82B               |          |        |           |          |         |            |         |          |      |        | 11 69   |
| 83A               |          |        |           |          |         | 21.46      |         | 3.68     |      | 1217   | 8.67    |
| 830               |          |        |           |          |         | -21.40     |         | -5.00    |      | 2.13   | 0.07    |
| 83D               |          |        |           |          |         | -55 22     | 8 36    |          | _    | _7.22  | _       |
| 83E               |          |        |           |          |         | -55.22     | 0.50    |          |      | 6.38   |         |
| 84A               | _        | -      | 23.20     | _        | _       | -          | _       | -        | -    | -0.50  | 13.40   |
| 0411<br>04D       | _        | -      | -25.20    | _        | _       | 45.17      | _       | -        | -    | -      | 12.40   |
| 04D<br>96 A       | _        | -      | 19.60     | _        | _       | -45.17     | 25.00   | 70.26    | -    | 60.69  | -12.01  |
| 00A<br>97 A       | -        | -      | -10.09    | -        | -       | -          | 23.09   | -79.20   | -    | -00.00 | 4.40    |
| 0/A<br>07D        | -        | -      | -         | -        | -       | -          | -       | -        | -    | -0.2/  | 4.49    |
| 8/B               | -        | -      | 1 4 2 0 2 | 101.04   | 100.72  | -          | -       | -        | -    | 0(72   | -/.01   |
| 90A               | -        | -      | -142.03   | -101.24  | -109.63 | -          | -       | -        | -    | 96.73  | -       |
| 90B               | -8.03    | -      | -123.42   | -28.69   | -88.23  | -          | -       | -16.46   | -    | 381.13 | -       |
| 91A               | -21.23   | -      | -         | -19.96   | -8.14   | 20.55      | -       | -        | -    | /4.26  | -       |
| 91B               | -        | -      | -         | -        | -11.73  | -          | -       | -        | -    | 12.44  | -       |
| 94A               | -        | -      | -         | -        | -76.98  | -          | -       | -        | -    | 33.63  | -       |
| 94B               | -        | -      | -         | -        | -6.22   | -          | -       |          | -    | -      | -       |
| 95A<br>05D        | -8.95    | -      | -27.50    | -75.70   | -78.03  | -          | -       | -23.08   | -    | 348.63 | 4.39    |
| УЭВ               | -33.80   | -      | -64.40    | -166.83  | -106.40 | /.94       | -       | -46./6   | -    | 694.39 | -       |

 $\frac{1}{1} CRP = Conservation Reserve Program$   $\frac{2}{3} MLRA = Major Land Resource Area$   $\frac{3}{3} Gg CO_2 eq. = Gigagrams carbon dioxide equivalent$ 



### Appendix Table B-12 State-Level Estimates of Mineral Soil Carbon Changes on Cropland<sup>1</sup> by Major Activity, 2013

|                | Cropland<br>Remaining<br>Cropland | Land Converted to<br>Cropland <sup>2</sup> | Grassland<br>Remaining<br>Grassland | Land Converted to<br>Grassland | Net Total |
|----------------|-----------------------------------|--------------------------------------------|-------------------------------------|--------------------------------|-----------|
| State          | *                                 |                                            | Tg CO2 eq.                          |                                |           |
| Alabama        | (0.63)                            | (0.08)                                     | (0.33)                              | (1.38)                         | (2.41)    |
| Alaska         | ND                                | ND                                         | ND                                  | ND                             | ND        |
| Arizona        | (0.05)                            | (0.01)                                     | (0.65)                              | (0.73)                         | (1.43)    |
| Arkansas       | (0.69)                            | 0.14                                       | (0.23)                              | (0.84)                         | (1.61)    |
| California     | (0.46)                            | 0.28                                       | (0.57)                              | (0.93)                         | (1.67)    |
| Colorado       | (0.43)                            | 0.17                                       | 1.08                                | (0.31)                         | 0.50      |
| Connecticut    | (0.01)                            | (0.01)                                     | (0.02)                              | (0.00)                         | (0.03)    |
| Delaware       | (0.09)                            | 0.00                                       | (0.00)                              | (0.01)                         | (0.11)    |
| Florida        | 0.04                              | 0.73                                       | (0.27)                              | (0.09)                         | 0.41      |
| Georgia        | (0.31)                            | (0.00)                                     | (0.40)                              | (0.19)                         | (0.90)    |
| Hawaii         | 0.00                              | 0.00                                       | 0.00                                | 0.00                           | 0.00      |
| Idaho          | (5.35)                            | 0.00                                       | (1.90)                              | (0.18)                         | (6.45)    |
| Illinois       | (1.00)                            | 0.14                                       | 0.19                                | (0.10)                         | (0.43)    |
| Indiana        | (6.15)                            | 0.76                                       | (0.46)                              | (0.12)                         | (6.12)    |
| Louia          | (0.13)                            | 0.70                                       | (0.40)                              | (0.20)                         | (0.12)    |
| Kanaaa         | (2.32)                            | 0.34                                       | (0.17)                              | (0.12)                         | (2.40)    |
| Kansas         | (4.20)                            | 0.46                                       | 0.63                                | (0.26)                         | (3.17)    |
| Кепциску       | (0.76)                            | (0.06)                                     | (0.67)                              | (0.26)                         | (1.75)    |
| Louisiana      | (0.86)                            | (0.05)                                     | (0.14)                              | (0.28)                         | (1.33)    |
| Maine          | (0.06)                            | 0.00                                       | (0.01)                              | 0.00                           | (0.07)    |
| Maryland       | (0.35)                            | 0.03                                       | (0.02)                              | (0.04)                         | (0.37)    |
| Massachusetts  | (0.12)                            | (0.02)                                     | 0.01                                | (0.00)                         | (0.14)    |
| Michigan       | (0.82)                            | 0.03                                       | (0.15)                              | (0.13)                         | (1.07)    |
| Minnesota      | (2.91)                            | 0.62                                       | (1.14)                              | (0.46)                         | (3.89)    |
| Mississippi    | (2.55)                            | 0.80                                       | (1.06)                              | (0.33)                         | (3.14)    |
| Missouri       | (0.57)                            | 0.14                                       | (0.42)                              | (0.28)                         | (1.13)    |
| Montana        | (2.26)                            | 0.44                                       | 5.63                                | (0.34)                         | 3.46      |
| Nebraska       | (0.78)                            | 0.01                                       | (0.24)                              | (0.14)                         | (1.15)    |
| Nevada         | (0.90)                            | 0.71                                       | 0.36                                | 0.05                           | 0.22      |
| New Hampshire  | (2.39)                            | 0.58                                       | 1.37                                | (0.11)                         | (0.54)    |
| New Jersey     | (0.05)                            | (0.01)                                     | 0.00                                | (0.00)                         | (0.06)    |
| New Mexico     | (0.13)                            | 0.00                                       | (0.01)                              | (0.03)                         | (0.18)    |
| New York       | (0.28)                            | (0.05)                                     | 1.19                                | (0.05)                         | 0.81      |
| North Carolina | (0.02)                            | (0.00)                                     | 0.08                                | (0.01)                         | 0.05      |
| North Dakota   | (1.05)                            | 0.08                                       | (0.13)                              | (0.07)                         | (1.18)    |
| Ohio           | (2.00)                            | 0.12                                       | (0.14)                              | (0.17)                         | (2.19)    |
| Oklahoma       | (1.46)                            | 0.19                                       | 1.01                                | (0.33)                         | (0.58)    |
| Oregon         | (0.26)                            | (0.15)                                     | 0.25                                | (0.22)                         | (0.39)    |
| Pennsylvania   | (0.54)                            | (0.03)                                     | (0.17)                              | (0.08)                         | (0.82)    |
| Rhode Island   | (0.00)                            | 0.01                                       | (0.01)                              | 0.00                           | (0.00)    |
| South Carolina | (0.39)                            | (0.05)                                     | (0.19)                              | (0.05)                         | (0.68)    |
| South Dakota   | (1.02)                            | 1.33                                       | 0.30                                | (0.10)                         | 0.50      |
| Tennessee      | (0.98)                            | 0.08                                       | (0.79)                              | (0.32)                         | (2.01)    |
| Texas          | (2.97)                            | 0.50                                       | 4.67                                | (0.72)                         | 1.48      |
| Utah           | (0.01)                            | 0.07                                       | 2.38                                | (0.08)                         | 2.36      |
| Vermont        | (0.91)                            | (0.10)                                     | (0.43)                              | (0.11)                         | (1.55)    |
| Virginia       | 0.00                              | 0.00                                       | 0.02                                | (0.01)                         | 0.02      |
| Washington     | (0.04)                            | 0.15                                       | (0.29)                              | (0.10)                         | (0.28)    |
| West Virginia  | 0.74                              | 0.31                                       | (0.36)                              | (0.32)                         | 0.36      |
| Wisconsin      | (0.34)                            | (0.06)                                     | (0.07)                              | (0.02)                         | (0.49)    |
| Wyoming        | (0.44)                            | 0.23                                       | 2.44                                | (0.04)                         | 2.19      |
| Total          | (49.33)                           | 9.79                                       | 10.34                               | (10.60)                        | (39.80)   |

 Total
 (49.33)
 9.79
 10.34
 (10.60)
 (39.80)

 Note: Parentheses indicate a net sequestration. Tg CO<sub>2</sub> eq is teragrams carbon dioxide equivalent. ND= No data.
 1 Data from mineral soils used; includes soil C sequestration on CRP lands.<sup>2</sup> Losses from annual cropping systems due to plow-out

of pastures, rangeland, hayland, set-aside lands, and perennial/horticultural cropland.







Chapter 4 Download data: http://dx.doi.org/10.15482/USDA.ADC/1264247

# **Carbon Stocks and Stock Changes in U.S. Forests**

#### 4.1 Summary

This chapter includes summary updates of inventories and carbon estimations relative to the national forest carbon budgets reported in the previous edition of the USDA Greenhouse Gas Inventory, Chapter 4 (Smith and Heath 2011). We present estimates of stocks and net annual stock change for carbon on forest lands and in harvested wood products for the United States that correspond to values reported for forest lands in the recent U.S. GHG Inventory, specifically Chapter 6: Land Use, Land-Use Change, and Forestry of EPA (2015). Results are generally consistent with reporting recommendations of the Intergovernmental Panel on Climate Change (IPCC) Good Practice Guidance for Land Use, Land-Use Change, and Forestry (Penman et al. 2003).

Chapter 6 (Land Use, Land-Use Change, and Forestry) of the U.S. GHG Inventory reported that carbon sequestered, or stored, in U.S. forest ecosystems and harvested wood products offset approximately 11.6 percent of total U.S. greenhouse gas emissions in 2013 (EPA 2015). The U.S. GHG Inventory also found that forests in the United States stored an estimated 705 and 71 MMT CO<sub>2</sub> eq. in 2013 (MMT  $\equiv$  million metric tons, where 1 metric ton = 106g) for forest ecosystems and harvested wood products, respectively. These numbers represent the amount of carbon sequestered in 2013 alone, adding to carbon stocks built up over past years. Total sequestration in 2013 was estimated to be 776 MMT CO<sub>2</sub> eq. with a 95-percent confidence interval from 973 to 576 MMT CO, eq. (Table 4-1). Forest ecosystems plus harvested wood products sequestered about 21 percent more CO<sub>2</sub> eq. in 2013 than in 1990 (Table 4-2). The forest ecosystems included in the report are in the conterminous United States and south central and southeastern coastal Alaska (Map 4-1). Estimated total carbon stocks of forest ecosystems are 146,600 MMT CO, eq.

Forest lands of the United States constitute approximately one-third of total land area (Oswalt et al. 2014). Recently summarized data indicate that forest land area in the conterminous United States has increased by 5 percent over the interval from 1987 to 2012, increasing from 243 to 257 million hectares (Oswalt et al. 2014). Table 4-2 shows the overall increase in forest land since 1990, based on the U.S. GHG Inventory. Carbon stocks in forest ecosystems and harvested wood products have also increased since 1990. Overall, the increased forest carbon sequestration between 1990 and 2013 is due to both increased forest area and increased carbon density (MT C per hectare of forest, where  $MT \equiv metric$ ton). The apparent increased carbon density from Table 4-2 is based on dividing total carbon stock by forest area, and this national-scale effect is influenced by more localized factors including management, disturbances, climate, and land use. The general trend of increased forest area and carbon stocks of Table 4-2 does not hold for all regions and ownerships (Tables 4-4 and 4-5); both area and carbon stocks have decreased in privately owned forest lands in the Rocky Mountains. In contrast, privately owned forests in the South generally decreased in forest area since the year 2000, while total carbon stocks increased over that same time interval.

Stock change sequences as calculated for the carbon pools are sometimes large and variable over time; this is particularly apparent with the larger pools such as aboveground biomass and soil organic carbon as in Table 4-2 between 2000 and 2005. Because change over an interval here is based on all forestland at time one relative to all forestland at time two, carbon pools on land entering or leaving "forest land" relative to other sectors is retained in this change

#### Table 4-1 Forest Carbon Stock Change Annualized Estimates and Uncertainty Intervals, 2013

|                | Estimate | 95% Confidence Interval |
|----------------|----------|-------------------------|
| Source         |          | MMT CO2 eq.             |
| Forest         | (705)    | (901) to (506)          |
| Harvested Wood | (71)     | (90) to (54)            |
| Total          | (776)    | (973) to (576)          |

Note: MMT CO2 eq. is million metric tons carbon dioxide equivalent. Forest ecosystem carbon stock change is based on annualized estimates for 2013 from the shaded area in Map 4-1. Parentheses (i.e., negative net annual change) indicate net forest ecosystem or wood products sequestration, by convention Source: EPA 2015



|                     | 1990    | 1995    | 2000                  | 2005                | 2010    | 2013    |
|---------------------|---------|---------|-----------------------|---------------------|---------|---------|
| Annual Change       |         |         | MMT CO <sub>2</sub> e | 9. yr <sup>=1</sup> |         |         |
| Forest              | (507.7) | (542.5) | (376.4)               | (704.4)             | (704.9) | (704.9) |
| Aboveground Biomass | (324.6) | (372.5) | (329.9)               | (402.8)             | (433.7) | (433.7) |
| Belowground Biomass | (63.2)  | (73.2)  | (65.0)                | (79.3)              | (87.4)  | (87.4)  |
| Dead Wood           | (45.9)  | (47.3)  | (70.2)                | (66.8)              | (95.0)  | (95.0)  |
| Litter              | (26.8)  | (18.2)  | 0.7                   | (11.8)              | (10.9)  | (10.9)  |
| Soil Organic Carbon | (47.2)  | (31.2)  | 88.0                  | (143.8)             | (77.9)  | (77.9)  |
| Harvested Wood      | (131.8) | (118.4) | (113.0)               | (102.7)             | (60.5)  | (70.8)  |
| Wood Products       | (64.8)  | (55.2)  | (47.1)                | (44.0)              | 3.7     | (11.0)  |
| SWDS                | (67.0)  | (63.2)  | (65.9)                | (58.7)              | (62.3)  | (62.3)  |
| Total               | (639.4) | (660.9) | (489.4)               | (807.1)             | (765.4) | (775.7) |
| Carbon Stock        |         |         |                       |                     |         |         |
| Forest              | 133,134 | 135,686 | 138,082               | 140,905             | 144,496 | 146,611 |
| Aboveground Biomass | 44,974  | 46,661  | 48,470                | 50,331              | 52,457  | 53,758  |
| Belowground Biomass | 8,911   | 9,241   | 9,597                 | 9,963               | 10,387  | 10,650  |
| Dead Wood           | 7,838   | 8,077   | 8,380                 | 8,743               | 9,153   | 9,438   |
| Litter              | 10,080  | 10,204  | 10,254                | 10,276              | 10,336  | 10,369  |
| Soil Organic Carbon | 61,330  | 61,503  | 61,380                | 61,592              | 62,163  | 62,397  |
| Harvested Wood      | 6,817   | 7,440   | 8,021                 | 8,525               | 8,969   | 9,167   |
| Wood Products       | 4,514   | 4,807   | 5,069                 | 5,262               | 5,397   | 5,408   |
| SWDS                | 2,303   | 2,633   | 2,952                 | 3,263               | 3,571   | 3,758   |
| Total               | 139,951 | 143,125 | 146,103               | 149,430             | 153,465 | 155,777 |
|                     |         |         | 1,000 ha              |                     |         |         |
| Forest Area         | 265,938 | 267,565 | 267,987               | 268,334             | 269,536 | 269,911 |

| Table 4-2 Forest | Carbon Stock/Stock | Change and Are | a Annualized | Estimates, | 1990, | 1995, | 2000, | 2005 |
|------------------|--------------------|----------------|--------------|------------|-------|-------|-------|------|
| 2010, and 2013   |                    |                |              |            |       |       |       |      |

Notes: Forest ecosystem carbon stocks and stock changes as well as forest area are based on annualized estimates for the shaded area in Map 4-1. Parentheses (i.e., negative net annual change) indicate net forest ecosystem or wood products sequestration, by convention. SWDS is Solid Waste Disposal Site. MMT  $CO_2$  eq. is million metric tons carbon dioxide equivalent. MMT  $CO_2$  eq. yr<sup>-1</sup> is million metric tons carbon dioxide equivalent per year.

Source: EPA 2015

accounting as stock gains or losses, respectively. These apparent highly variable change estimates can be partitioned to individual States and specific inventories within those States (Smith and Heath 2015); however, such an extension of the analysis is beyond the scope of this chapter.

Tables 4-1 and 4-2 do not include woody biomass burned for energy production and carbon sequestered by trees in urban areas, though these affect net GHG emissions. An additional 209 MMT  $CO_2$  eq. was harvested and burned to produce energy in 2013. This quantity of emitted  $CO_2$  eq. is not included in this chapter (or the Land Use, Land-Use Change, and Forestry portion of the national GHG inventory) because it is a part of energy accounting; see Chapter 3 (Energy) of EPA (2015). Trees in urban areas also sequestered about 90 MMT  $CO_2$  eq. in 2013. This quantity is reported in Chapter 6, Land Use, Land-Use Change, and Forestry of EPA (2015) but is reported separately from forest land because urban lands fall within the settlements land use category.

## 4.2 Background Concepts and Conventions for Reporting Forest Carbon

This chapter summarizes carbon stocks and stock changes on the approximately 270 million hectares located in the conterminous 48 States and coastal Alaska that are considered managed (EPA 2015). Land designated as managed aligns with IPCC guidance for greenhouse gas inventories. The IPCC defines managed forests as those under human influence and with a potential to affect anthropogenic carbon emissions. All forest land of the conterminous United States is considered managed under IPCC guidance due to explicit timber and fire management (e.g., fire suppression in wilderness areas). A large proportion of conterminous U.S. forests, 80 percent, are classified as timberland, meaning they meet minimum levels of productivity and are administratively available for timber harvest. We do not distinguish between the effects of management and land use change, such as afforestation, increased



#### Table 4-3 Carbon Stocks by Ownership and Forest Type and Groups by Region, 2013

| Region:                                   | Pa      | cific Coas | st      | Roc     | Rocky Mountain |         |                         | North  |         |         | South  |         |  |
|-------------------------------------------|---------|------------|---------|---------|----------------|---------|-------------------------|--------|---------|---------|--------|---------|--|
|                                           |         | Other      |         |         | Other          |         |                         | Other  |         |         | Other  |         |  |
|                                           | Federal | Public     | Private | Federal | Public         | Private | Federal                 | Public | Private | Federal | Public | Private |  |
| Forest Type Group                         |         |            |         |         | N              | IMT CO  | 2 eq. yr <sup>=</sup> ' |        |         |         |        |         |  |
| White/Red/Jack Pine                       |         |            |         |         |                |         | 407                     | 636    | 1,602   | 43      | 6      | 72      |  |
| Spruce/Fir                                | 111     | 34         | 26      |         |                |         | 793                     | 1,833  | 3,013   | 6       | 5      | 3       |  |
| Longleaf/Slash Pine                       |         |            |         |         |                |         |                         |        |         | 526     | 359    | 2,326   |  |
| Loblolly/Shortleaf Pine                   |         |            |         |         |                |         | 47                      | 126    | 207     | 1,040   | 309    | 9,784   |  |
| Other Eastern Softwoods                   |         |            |         |         |                |         | 3                       | 5      | 138     | 12      | 8      | 192     |  |
| Pinyon/Juniper                            | 94      | 4          | 10      | 1,874   | 160            | 880     | 11                      | 2      | 10      | 15      | 21     | 517     |  |
| Douglas-fir                               | 4,663   | 869        | 3,145   | 2,499   | 142            | 648     |                         | 0      | 1       |         |        |         |  |
| Ponderosa Pine                            | 1,091   | 60         | 636     | 969     | 83             | 553     | 128                     | 10     | 63      |         |        |         |  |
| Western White Pine<br>Fir/Spruce/Mountain | 43      |            |         | 4       | 1              | 5       |                         |        |         |         |        |         |  |
| Hemlock                                   | 4,238   | 127        | 393     | 4,312   | 126            | 346     |                         |        | 9       |         |        |         |  |
| Lodgepole Pine                            | 659     | 21         | 115     | 1,855   | 28             | 133     |                         |        |         |         |        |         |  |
| Hemlock/Sitka Spruce                      | 3,683   | 653        | 1,046   | 234     | 26             | 68      |                         |        |         |         |        |         |  |
| Western Larch                             | 114     | 9          | 22      | 178     | 25             | 41      |                         |        |         |         |        |         |  |
| Redwood                                   | 53      | 87         | 263     |         |                |         |                         |        |         |         |        |         |  |
| Other Western Softwoods                   | 511     | 18         | 200     | 301     | 14             | 29      |                         |        |         |         |        |         |  |
| California Mixed Conifer                  | 2,005   | 32         | 553     |         |                |         |                         |        |         |         |        |         |  |
| Exotic Softwoods                          |         |            |         |         |                |         |                         | 26     | 124     |         |        |         |  |
| Other Softwoods                           |         |            |         |         |                |         |                         |        | 1       |         |        |         |  |
| Oak/Pine                                  |         |            |         |         |                |         | 123                     | 229    | 984     | 470     | 193    | 3,425   |  |
| Oak/Hickory                               |         |            | 1       | 4       |                | 7       | 881                     | 2,140  | 11,871  | 1,903   | 618    | 13,463  |  |
| Oak/Gum/Cypress                           |         |            |         |         |                |         | 18                      | 57     | 143     | 801     | 734    | 5,480   |  |
| Elm/Ash/Cottonwood                        | 53      | 46         | 66      | 22      | 10             | 66      | 253                     | 705    | 3,386   | 134     | 144    | 1,814   |  |
| Maple/Beech/Birch                         |         |            |         |         |                |         | 1,132                   | 2,282  | 9,289   | 90      | 17     | 320     |  |
| Aspen/Birch                               | 74      | 16         | 55      | 1,077   | 43             | 281     | 682                     | 1,370  | 2,630   | 1       |        | 2       |  |
| Alder/Maple                               | 156     | 217        | 707     | 2       | 1              | 1       |                         |        |         |         |        |         |  |
| Western Oak                               | 615     | 71         | 885     |         |                |         |                         |        |         |         |        |         |  |
| Tanoak/Laurel                             | 349     | 57         | 442     |         |                |         |                         |        |         |         |        |         |  |
| Other Hardwoods                           | 97      | 24         | 131     | 1       | 0              | 0       | 39                      | 109    | 241     | 59      | 11     | 159     |  |
| Woodland Hardwoods                        | 49      | 3          | 20      | 432     | 35             | 227     |                         |        |         | 9       | 38     | 1,455   |  |
| Tropical Hardwoods                        |         |            |         |         |                |         |                         |        |         | 43      | 107    | 97      |  |
| Exotic Hardwoods                          | 0       |            | 0       |         | 0              | 1       | 0                       | 6      | 42      | 3       | 17     | 171     |  |
| Nonstocked                                | 266     | 21         | 147     | 539     | 32             | 164     | 36                      | 77     | 254     | 31      | 46     | 665     |  |

Notes:

See USDA Forest Service (2015a) for additional details on how classifications are defined.

Carbon densities are based on the most recent inventory per state for shaded area in Map 4-1.

Blank indicates that the type group does not appear within the inventory for that region and ownership, zeros are the result of rounding a small quantity.

productivity, reduced conversion to non-forest uses, lengthened rotations, and increased proportion and retention of carbon in harvested wood products in this chapter, but the effects are implicitly a part of the inventory and are thus reflected in estimates of carbon stocks and stock changes.

For reporting purposes (e.g., as in Table 4-2), we classify carbon estimates in forest ecosystems into the following pools (Penman et al. 2003):

• Aboveground biomass, which includes all living biomass above the soil including stem, stump, branches, bark, seeds, and foliage. This category includes not only live trees but also live understory.

- Belowground biomass, which includes all living biomass of coarse living roots greater than 2 mm diameter.
- Dead wood, which includes all non-living woody biomass either standing, lying on the ground (but not including litter), or in the soil.
- Litter, which includes the litter, fumic, and humic layers, and all non-living biomass with a diameter less than 7.5 cm at transect intersection lying on the ground.
- Soil organic carbon (SOC), which includes all organic material, including fine roots, in soil to a depth of 1 meter but excluding the coarse roots of the belowground pools.



Within the carbon pool of biomass, we further separated initial carbon estimates into the categories of live trees (diameter greater than 2.5 cm) and understory (smaller live vegetation). Similarly, we separated the dead wood pool into standing dead wood and down dead wood.

The two carbon pools reported for harvested wood products are:

- Harvested wood products in use.
- Harvested wood products in solid waste disposal sites.

The U.S. GHG Inventory estimates of carbon in harvested wood products are reported at the national scale in Tables 4-1 and 4-2, and are not disaggregated to the State level.

The U.S. GHG Inventory relies on annualized estimates of forest carbon stocks within each U.S. State from 1990 to present. Many of the carbon stock summaries presented here (and some in EPA 2015) are based on the most recent per-State forest inventory data; the year of these newest data varies by State. Thus, some of our results reflect the annualized State data (EPA 2015, Smith et al. 2010), and other results are based on the most recent available forest inventory data per State. Specifically, we used the annualized model for stock and stock change as the basis for Tables 4-1, 4-2, 4-4, 4-7, 4-8, and C-2 and Figures 4-1 and 4-2. The most recent surveys per State are summarized in Tables 4-3, 4-6, C-1, C-3, and C-4.

The estimates in this chapter focus on carbon mass, but we report results as the equivalent mass of carbon dioxide by multiplying by 44/12, by convention. Also following reporting conventions, GHG inventory reporting records net ecosystem carbon gain as a negative value (i.e.,  $CO_2$  loss from the atmosphere). Therefore, numbers in parentheses (negative values) represent a net annual gain in carbon accumulated within forests or harvested wood pools (i.e., forest carbon gain as a negative net change, or flux, of carbon stocks). For example, Table 4-2 lists (706) MMT  $CO_2$  eq. as the net amount sequestered by forest ecosystems in 2013, which from an atmosphere perspective represents  $CO_2$  removed from the atmosphere.

The carbon stocks estimated in this chapter reflect lands identified as forest at the time field data were collected. Thus, the stock change estimates include net change in forest land area and do not separately account for land use change. Net gains or losses within the carbon pools could result in either a  $CO_2$  exchange with the atmosphere or movement of carbon to or from non-forest lands. Future improvements in the forest carbon estimates will directly address these issues. Most live tree and dead wood carbon changes are very likely the result of forest growth, removals, or mortality rather than land use changes. However, soil organic carbon, while generally much higher in forests as compared to other ecosystems, is a relatively large pool and slow to change.

## 4.3 Carbon Stocks and Stock Changes by Forest Type, Region, and Ownership

Some of the results in this chapter are reprinted from EPA 2015; specifically Tables 4-1 and 4-2. The remaining tables are based on the same underlying inventory-based forest carbon data (developed by the authors and provided to EPA 2015) but are summarized according to additional classification details not included in EPA (2015) such as ownership, regions, forest types, or stand characteristics. Thus, the forest carbon estimates reported here expand on the information provided in the U.S. GHG Inventory (EPA 2015).

Table 4-3 lists total forest ecosystem carbon stocks according to forest type group, region, and ownership. Forest type groups are partitioned according to those in the forest inventory database (FIADB, USDA FS 2015a). Regions are identified in Map 4-1. There are three broad classes of land ownership. Publicly owned forest lands are divided into Federally owned lands and "other public" (i.e., those under State, city, or other local government). All privately owned forest lands are combined into the third ownership classification of "private." Table 4-3 is based on the most recent survey data per State.



Map 4-1 Geographic Regions Used for Carbon Stock and Stock Change Summaries (The shaded area represents the extent of the forest inventories used for forest carbon estimates.)



The majority of forest carbon in the Western United States is on public lands while the majority of forest carbon in the Eastern United States is on privately owned forest lands (Table 4-3). There are some trends apparent between public and private lands. For example, carbon stocks in the ponderosa pine and fir/spruce/mountain hemlock group tend to occur on publicly owned land, which corresponds to the type of forest. As seen in Table 4-3, the oak/hickory type group contains the largest stock of forest carbon. Appendix tables C-1a and C-1b provide forest area and carbon stocks of live trees, respectively, in the same format as Table 4-3. The same classifications for region and ownership were applied to disaggregated annualized stock and stock change estimates. Tables 4-4 and 4-5 show the total annualized carbon stock change and annualized forest area by region. These tables also show uncertainty around the 2013 estimates using a 95-percent confidence interval. In general, the gains in total carbon stocks (negative values in Table 4-4) were accompanied by increases in forest area (Table 4-5). The trend toward continuous increase in stocks and area does not hold for all regions and ownerships; both area and carbon stocks decreased for privately owned forest lands in the Pacific Coast

| Table 4-4 Total Annualized Carbon Stock Change | e 1990-2013, With Uncertainty Interval for 2013 |
|------------------------------------------------|-------------------------------------------------|
|------------------------------------------------|-------------------------------------------------|

|                |                 | 1990                        | 1995        | 2000       | 2005       | 2010       | 2013  | 2013                                     | 2013 |  |
|----------------|-----------------|-----------------------------|-------------|------------|------------|------------|-------|------------------------------------------|------|--|
| Region         | Ownership group | Fo                          | prest ecosy | stem total | carbon sto | ock change |       | Uncertainty                              |      |  |
|                |                 |                             |             |            |            |            |       | LB                                       | UB   |  |
|                |                 | MMT CO2 eq. yr <sup>1</sup> |             |            |            |            |       | MMT CO <sub>2</sub> eq. yr <sup>-1</sup> |      |  |
| Pacific Coast  | Federal         | (60)                        | (60)        | (51)       | (47)       | (101)      | (101) | (185)                                    | (15) |  |
| Pacific Coast  | Other Public    | (26)                        | (26)        | (16)       | (16)       | (12)       | (12)  | (65)                                     | 41   |  |
| Pacific Coast  | Private         | (28)                        | (28)        | 12         | 12         | (11)       | (11)  | (89)                                     | 70   |  |
| Rocky Mountain | Federal         | (59)                        | (58)        | (22)       | (22)       | (34)       | (35)  | (93)                                     | 21   |  |
| Rocky Mountain | Other Public    | (4)                         | (4)         | (3)        | (1)        | (2)        | (2)   | (14)                                     | 8    |  |
| Rocky Mountain | Private         | 22                          | 22          | 19         | 26         | 27         | 27    | (1)                                      | 54   |  |
| North          | Federal         | (13)                        | (6)         | (13)       | (38)       | (32)       | (32)  | (64)                                     | (0)  |  |
| North          | Other Public    | (48)                        | (65)        | (81)       | (95)       | (99)       | (99)  | (162)                                    | (37) |  |
| North          | Private         | (99)                        | (68)        | (33)       | (258)      | (170)      | (170) | (254)                                    | (86) |  |
| South          | Federal         | (61)                        | (96)        | (101)      | (47)       | (42)       | (42)  | (110)                                    | 35   |  |
| South          | Other Public    | (51)                        | (76)        | (76)       | (59)       | (44)       | (44)  | (96)                                     | 12   |  |
| South          | Private         | (69)                        | (66)        | (12)       | (161)      | (191)      | (191) | (304)                                    | (79) |  |

Notes: MMT CO<sub>2</sub> eq. yr<sup>-1</sup> is million metric tons carbon dioxide equivalent per year. Parentheses (i.e., negative net annual change) indicate net forest ecosystem or wood products sequestration, by convention.

#### Table 4-5 Total Annualized Forest Land 1990-2013, with Uncertainty Interval for 2013

|                |              | 1990   | 1995   | 2000   | 2005    | 2010   | 2013   | 2013   | 2013   |
|----------------|--------------|--------|--------|--------|---------|--------|--------|--------|--------|
| Region         | Ownership    |        |        | Fores  | st land |        |        | Uncer  | tainty |
|                | group        |        |        |        |         |        |        | LB     | UB     |
|                |              |        |        | 1,00   | 00 ha   |        |        | 1,00   | 0 ha   |
| Pacific Coast  | Federal      | 23,610 | 23,663 | 23,672 | 23,492  | 23,250 | 23,096 | 22,629 | 23,553 |
| Pacific Coast  | Other Public | 2,318  | 2,409  | 2,485  | 2,549   | 2,588  | 2,599  | 2,342  | 2,856  |
| Pacific Coast  | Private      | 14,596 | 14,583 | 14,497 | 14,215  | 13,861 | 13,638 | 13,130 | 14,142 |
| Rocky Mountain | Federal      | 39,256 | 39,714 | 39,656 | 39,054  | 39,110 | 39,229 | 38,376 | 40,063 |
| Rocky Mountain | Other Public | 2,452  | 2,481  | 2,510  | 2,517   | 2,546  | 2,568  | 2,311  | 2,829  |
| Rocky Mountain | Private      | 14,716 | 14,216 | 13,726 | 13,252  | 12,845 | 12,631 | 12,062 | 13,196 |
| North          | Federal      | 6,009  | 6,072  | 6,134  | 6,249   | 6,382  | 6,452  | 6,320  | 6,587  |
| North          | Other Public | 10,987 | 11,383 | 11,919 | 12,485  | 13,050 | 13,405 | 13,153 | 13,650 |
| North          | Private      | 53,346 | 53,262 | 53,070 | 53,641  | 54,355 | 54,564 | 54,147 | 54,989 |
| South          | Federal      | 7,172  | 7,615  | 8,230  | 8,676   | 8,889  | 9,000  | 8,558  | 9,408  |
| South          | Other Public | 2,474  | 2,918  | 3,514  | 4,108   | 4,537  | 4,746  | 4,433  | 5,029  |
| South          | Private      | 89,085 | 89,293 | 88,586 | 88,083  | 88,117 | 87,994 | 87,237 | 88,752 |

Notes:

See USDA Forest Service (2014a) for additional details on how classifications are defined.

Uncertainty bounds (LB=Lower Bounds; UB=Upper Bounds) are the 2.5th and 97.5th percentiles of the results of the Monte Carlo simulation.

Carbon stock change and forest area are based on annualized estimates for the shaded area in Map 4-1.

Parentheses (i.e., negative net annual change) indicate net forest ecosystem sequestration, by convention.





Figure 4-1 Forest Ecosystem Carbon Stocks (MMT CO<sub>2</sub> eq. is million metric tons of carbon dioxide equivalent)





and Rocky Mountain regions for at least a portion of the interval. In Federally owned forest lands in the Pacific Coast region and privately owned forests in the South, forest area generally decreased since the year 2000 while total carbon stocks increased over that same interval.

Estimates of current average stocks and stock change according to ecosystem carbon pools are illustrated in Figures 4-1 and 4-2. Table 4-6 shows plot-level carbon densities for the six ecosystem pools: live trees, understory, standing dead trees, down dead wood, forest floor, and soil organic carbon by region and ownership. The densities-measured in MT CO<sub>2</sub> eq. per hectare—were based on the most recent survey data per State. Note that despite the sometimes much greater carbon stock per hectare in some western forests, especially along the Pacific Coast, the generally larger total area of forest land

in the East places those forests as the major portion of stock and change as illustrated in Figures 4-1 and 4-2. Tables 4-7 and 4-8 disaggregate the ecosystem pools for the annualized data for 2013 for carbon stocks (MMT CO, eq.) and net stock change (MMT CO<sub>2</sub> eq. per year). As discussed above, these stock change estimates are not separately allocated according to land use change, and corresponding stock gains or losses are retained in the net annual changes provided in Tables 4-2 and 4-8, for example. See Smith and Heath (2015) for additional discussion on how aggregate change at regional or national levels can be attributed to individual State-level

Additional summaries are provided in the appendix tables. Annualized stock and net stock change estimates for 2013 are provided for the 49 States included in the inventory in Table C-2. In addition

| Pagion                 | Ownership    | Live  | Undorstory | Standing  | Down dead      | Forest | Soil organic | Forest      |
|------------------------|--------------|-------|------------|-----------|----------------|--------|--------------|-------------|
| Region                 | group        | tree  | Understory | dead tree | wood           | floor  | carbon       | area        |
|                        |              |       |            |           | MT CO2 eq. per | r ha   |              | 1,000<br>ha |
| Pacific Coast          | Federal      | 400.7 | 11.1       | 37.0      | 47.5           | 66.1   | 247.5        | 23,370      |
| Pacific Coast          | Other Public | 451.8 | 12.1       | 23.3      | 57.6           | 67.4   | 304.4        | 2,582       |
| Pacific Coast<br>Rocky | Private      | 272.1 | 12.8       | 11.1      | 40.1           | 48.9   | 251.5        | 14,011      |
| Mountain<br>Rocky      | Federal      | 151.4 | 9.7        | 28.8      | 19.6           | 42.7   | 116.6        | 38,784      |
| Mountain<br>Rocky      | Other Public | 112.8 | 10.7       | 9.0       | 15.6           | 33.4   | 108.5        | 2,508       |
| Mountain               | Private      | 95.1  | 10.8       | 7.2       | 14.7           | 32.5   | 107.3        | 12,888      |
| North                  | Federal      | 242.8 | 6.6        | 9.5       | 16.4           | 43.3   | 391.7        | 6,409       |
| North                  | Other Public | 244.8 | 6.7        | 8.4       | 16.5           | 45.5   | 409.2        | 13,150      |
| North                  | Private      | 246.4 | 6.6        | 6.6       | 16.0           | 39.7   | 309.3        | 54,443      |
| South                  | Federal      | 286.6 | 10.3       | 7.2       | 21.7           | 34.0   | 222.1        | 8,911       |
| South                  | Other Public | 232.6 | 10.4       | 3.9       | 21.9           | 34.2   | 272.9        | 4,570       |
| South                  | Private      | 189.6 | 11.8       | 3.0       | 18.4           | 25.9   | 204.8        | 88,076      |

Table 4-6 Mean Plot-Level Carbon Densities According to Region and Ownership for Six Carbon Pools Based on the Most Recent Inventory Per State

forest inventories.

Note: MT CO2 eq. per ha is metric tons carbon dioxide equivalent per hectare.

to the annualized forest area for 2013, Table C-2 allocates total forest carbon stocks into three pools: live trees, total non-soil (including live trees), and soil organic carbon. Net annualized stock change summed for each State for 2013 is also included for the live tree and total non-soil carbon classifications. The two remaining appendix tables were compiled from the most recent forest inventory data per State and organized about the four regions, but the ownership classifications were modified slightly because the emphasis in these tables is on productivity and reserved status (and multiple ownership classifications are superfluous). First, all forest lands classified as reserved (see USDA FS 2015a) were pooled, and the remaining, nonreserved, forest land was sorted according to public versus private ownership. We also disaggregated carbon density by the three pools from Table C-2, land area, and stand age class (Table C-3). Table C-3 reports the range of plot-level carbon densities from the 5th to 95th percentiles for the three pools. Similar classifications and summary values were compiled according to stand size class for Table C-4.

Table 4-7 Total Forest Ecosystem Carbon Stocks According to Region and Ownership for Six Carbon Pools Based on Annualized Estimates for 2013

| Region         | Ownership    | Live tree | Understory | Standing | Down dead | Forest floor | Soil organic |  |  |
|----------------|--------------|-----------|------------|----------|-----------|--------------|--------------|--|--|
|                | group        |           |            | MMT (    | 202 ea.   |              |              |  |  |
| Pacific Coast  | Federal      | 9,840     | 252        | 905      | 1,128     | 1,553        | 5,739        |  |  |
| Pacific Coast  | Other Public | 1,235     | 31         | 58       | 150       | 174          | 780          |  |  |
| Pacific Coast  | Private      | 3,876     | 173        | 158      | 570       | 674          | 3,462        |  |  |
| Rocky Mountain | Federal      | 5,813     | 386        | 1,301    | 765       | 1,660        | 4,584        |  |  |
| Rocky Mountain | Other Public | 289       | 27         | 25       | 40        | 86           | 278          |  |  |
| Rocky Mountain | Private      | 1,173     | 137        | 90       | 185       | 407          | 1,348        |  |  |
| North          | Federal      | 1,590     | 42         | 66       | 107       | 280          | 2,525        |  |  |
| North          | Other Public | 3,329     | 90         | 119      | 224       | 609          | 5,456        |  |  |
| North          | Private      | 13,644    | 360        | 380      | 884       | 2,166        | 16,903       |  |  |
| South          | Federal      | 2,613     | 92         | 69       | 197       | 306          | 2,010        |  |  |
| South          | Other Public | 1,109     | 49         | 17       | 103       | 163          | 1,296        |  |  |
| South          | Private      | 17,247    | 1,034      | 255      | 1,641     | 2,291        | 18,015       |  |  |

Note: MMT CO2 eq. is million metric tons carbon dioxide equivalent.

| Table 4-8 Net Annua | l Forest Ecosystem ( | Carbon Stock Chan | ge According to I | Region and Owne | rship for Six Carbon |
|---------------------|----------------------|-------------------|-------------------|-----------------|----------------------|
| Pools Based on Annu | alized Estimates fo  | r 2013            |                   |                 |                      |

| Region Ownership<br>group |              | Live tree | Understory | Standing<br>dead tree | Standing Down dead<br>lead tree wood |     | Soil organic<br>carbon |
|---------------------------|--------------|-----------|------------|-----------------------|--------------------------------------|-----|------------------------|
|                           |              |           |            | MMT C                 | O <sub>2</sub> eq. yr <sup>1</sup>   |     |                        |
| Pacific Coast             | Federal      | (96)      | 1          | (9)                   | (4)                                  | (2) | 8                      |
| Pacific Coast             | Other Public | (13)      | (0)        | 0                     | (0)                                  | (0) | 1                      |
| Pacific Coast             | Private      | (25)      | 1          | (1)                   | (2)                                  | 2   | 12                     |
| Rocky Mountain            | Federal      | 21        | (2)        | (45)                  | (0)                                  | 0   | (10)                   |
| Rocky Mountain            | Other Public | (1)       | (0)        | (0)                   | (0)                                  | (0) | (0)                    |
| Rocky Mountain            | Private      | 13        | 1          | 0                     | 1                                    | 3   | 9                      |
| North                     | Federal      | (19)      | (0)        | (3)                   | (1)                                  | (1) | (8)                    |
| North                     | Other Public | (50)      | (1)        | (4)                   | (3)                                  | (5) | (36)                   |
| North                     | Private      | (115)     | (0)        | (11)                  | (7)                                  | (2) | (36)                   |
| South                     | Federal      | (24)      | (0)        | (1)                   | (1)                                  | (2) | (14)                   |
| South                     | Other Public | (20)      | (1)        | 0                     | (1)                                  | (3) | (20)                   |
| South                     | Private      | (201)     | 2          | 3                     | (6)                                  | (3) | 14                     |

Notes:

MMT CO<sub>2</sub> eq. yr<sup>-1</sup> is million metric tons carbon dioxide equivalent per year.

See USDA Forest Service (2015a) for additional details on how classifications are defined.

Summaries are based on forest inventories for the shaded area in Map 4-1.

Parentheses (i.e., negative net annual change) indicate net forest ecosystem sequestration, by convention.



## 4.4 Mechanisms of Carbon Transfer

Forest management can be defined as activities involving the regeneration, tending, protection, harvest, and utilization of forest resources to meet goals defined by the forest land owner. Forest management affects carbon stocks and stock changes through the control of mechanisms associated with carbon gain and loss. For example, increased tree volume per area of forest generally indicates increased carbon stocks.

Carbon sequestration results from the continuous exchange of carbon dioxide between forest ecosystems/products and the atmosphere (Figure 4-3). Note that comprehensive greenhouse gas reporting for forests would also include some non- $CO_2$  emissions such as methane and non-carbon emissions such as nitrous oxide, for example. However, the vast majority of exchange is in terms of  $CO_2$ , which is the focus of this chapter. Trees accumulate carbon as they grow and remove it from the atmosphere, whereas other processes such as respiration, decomposition, or combustion remove  $CO_2$  from forests. Forests convert much of the accumulated organic carbon to wood, which stores carbon and energy. Plant death and subsequent decomposition as well as external influences such as harvest and utilization of wood play significant roles in emissions of  $CO_2$  from forests to the atmosphere. Mortality and disturbance emit some  $CO_2$  (e.g., from fire) and also add to the pools of down dead wood and forest floor, which decay over time. Carbon can also be removed from forest ecosystems through runoff or leaching through soil.

Wood products that are removed from the forest sequester carbon until it is eventually released. Harvested wood carbon pools can lengthen the time before that carbon returns to the atmosphere; however, expected life-spans of wood products vary considerably. Wood products emit CO<sub>2</sub> through either burning or decay (Figure 4-3). Net release of carbon from wood products depends on the product, its end use, and the means of disposal (Smith et al. 2006, Skog 2008). Wood can be burned for energy or without energy capture (Figure 4-3). Because of its role as an energy source, wood can displace other fuel sources. Improved management of wood products in their use and in landfills provides a number of opportunities to reduce emissions and increase sequestration, such as substituting for nonrenewable materials, for example (Perez-Garcia et al. 2005).



Figure 4-3 Summary Diagram of Forest Carbon Pools and Carbon Transfer Among Pools



## 4.5 Methods

We based estimates of forest ecosystem carbon on the stock change method, using collected forest data to produce a series of successive carbon stock estimates for an individual State (Penman et al. 2003, Smith et al. 2010). The USDA Forest Service's Forest Inventory and Analysis (FIA) Program conducts a series of partial surveys per State each year with re-measurements at 5- to 10-year intervals, depending on the State (USDA FS 2015b). The term "survey" is used here to describe a complete inventory for a State for 1 year, which is repeated at regular intervals. The FIA Program defines the extent of forest land within each State (USDA FS 2014a,c), and limited adjustments on what to include in the greenhouse gas inventory to reflect United Nations Framework Convention on Climate Change reporting guidelines. Specifically, some of the forest area of southern coastal Alaska (which is the only portion of Alaska forests currently included, see Annex 3.13 of EPA 2015) is identified as unmanaged and excluded from these estimates (Ogle et al. In Prep). In addition, some stands of the woodland forest type groups are also excluded because they are on sites very unlikely to support trees meeting the minimum height defined for "forest" (Coulston et al. In Prep).

Current forest survey data for the United States are available from the FIA Database (FIADB) version 6.0.1 (USDA FS 2015c). All FIADB surveys used for carbon stock estimates were obtained from the FIADB data download Web site (http://apps.fs.fed. us/fiadb-downloads/datamart.html) on July 21, 2014. Surveys from the FIADB are supplemented with some older surveys; see Annex 3.13 of EPA (2015) for a list of the specific surveys used for the estimates. Carbon estimation factors (EPA 2015, Smith et al. 2010) were applied to the plot-level inventory data and summed to calculate carbon stocks for each survey of each State. Carbon stocks for each State or sub-State classification were assigned to survey years with net stock change based on the interval (in years) between the stocks (i.e., difference in successive stocks divided by the interval in years). In this way, State-wide annualized estimates of ecosystem stock and stock change can be calculated and summed to U.S. totals as presented in EPA (2015). A similar approach was taken to produce the estimates according to the additional classifications as provided here. Note that these stock change calculations are based on total forest land in each successive inventory, and an effect of land use change on these estimates is to increase apparent sequestration or emission in proportion to the land moved between sectors. Carbon estimates for harvested wood products are based on a separate

stock change method (EPA 2015) and are not available for more detailed classifications other than national totals in the tables provided here. Methods are described below with additional details in EPA (2015), Smith et al. (2010), and Smith et al. (2013); in particular, see Annex 3.13 of EPA (2015).

#### 4.5.1 Live Trees

Live tree carbon pools include aboveground and belowground (coarse root) biomass of live trees with diameter at diameter breast height (dbh) of at least 2.54 cm at 1.37 m above the forest floor. Separate estimates were made for above- and below-ground biomass components. When inventory plots included data on individual trees, tree carbon was estimated using approaches defined by Woodall et al. (2011), which is also known as the component ratio method (CRM) and is a function of volume, species, and diameter. An additional component of foliage, which was not explicitly included in Woodall et al. (2011), was added to each tree following the CRM method and component proportions. Some of the older forest inventory data did not provide measurements of individual trees. The carbon estimates for those plots were based on average densities (MT C per hectare) obtained from plots of more recent surveys with similar stand characteristics and location. This applies to less than 5 percent of the forest land inventory-plot-to-carbon conversions utilized for the 1990-2013 stock change estimates of Table 4-2.

#### 4.5.2 Understory Vegetation

Understory vegetation is defined as all biomass of undergrowth plants in a forest, including woody shrubs and trees less than 2.54 cm dbh. We assumed that 10 percent of understory carbon mass is belowground. This general root-to-shoot ratio (0.11) is near the lower range of temperate forest values provided in Penman et al. (2003) and was selected based on two general assumptions: (1) ratios are likely to be lower for light-limited understory vegetation as compared with larger trees, and (2) a greater proportion of all root mass will be less than 2 mm diameter. See Annex 3.13 of EPA (2015) for calculation details.

#### 4.5.3 Dead Organic Matter

Dead organic matter was calculated as three separate pools: standing dead trees, down dead wood, and litter. Sample data or models were used to estimate carbon stocks. The standing-dead-tree carbon pools include aboveground and belowground (coarse root) mass and include dead trees of at least 12.7 cm dbh. Calculations followed the basic method applied







to live trees (Woodall et al. 2011) with additional modifications to account for decay and structural loss (Domke et al. 2011, Harmon et al. 2011). Similar to the situation with live-tree data, some of the older forest inventory data did not provide sufficient data on standing dead trees to make accurate populationlevel estimates. The carbon estimates for these plots were based on average densities (MT C per hectare) obtained from plots of more recent surveys with similar stand characteristics and location. This applied to about 20 percent of the forest land inventory-plot-to-carbon conversions utilized for the 1990-2013 stock change estimates. Downed dead wood is defined as pieces of dead wood greater than 7.5 cm diameter, at transect intersection, that are not attached to live or standing dead trees. This includes stumps and roots of harvested trees. Downeddead-wood estimates were a two-step calculation process detailed in Annex 3.13 of EPA (2015). Initial estimates based on live-tree carbon were modified according to measurements of a limited subset of FIA plots for downed dead wood (Domke et al. 2013, Woodall and Monleon 2008, Woodall et al. 2013). To facilitate the downscaling of downed-dead-wood carbon estimates from the State-wide population estimates to individual plots, downed-dead-wood models specific to regions and forest types within each region were used. Litter carbon is the pool of organic carbon (also known as duff, humus, and fine woody debris) above the mineral soil and includes woody fragments with diameters of up to 7.5 cm.

Estimates are based on a model developed around measurements of a subset of FIA plots (Domke et al. 2016).

#### 4.5.4 Soil Organic Carbon

Soil organic carbon (SOC) includes all organic material in soil to a depth of 1 meter but excludes the coarse roots of the biomass or dead wood pools. Estimates of SOC were based on the national STATSGO spatial database (USDA 1991), which includes region and soil type information. Soil organic carbon determination was based on the general approach described by Amichev and Galbraith (2004). Links to FIA inventory data were developed with the assistance of the USDA Forest Service FIA Geospatial Service Center by overlaying FIA forest inventory plots on the soil carbon map (see Annex 3.13 of EPA 2015 and Smith et al. 2013 for additional details about this approach). This method produced mean SOC densities stratified by region and forest type group. It did not provide separate estimates for mineral or organic soils but instead weighted their contribution to the overall average based on the relative amount of each within forest land. Thus, forest SOC is a function of species and location, and net change also depends on these two factors as total forest area changes. In this respect, SOC provides a country-specific reference stock for 1990-present, but it does not reflect effects of past land use.

#### 4.5.5 Harvested Wood Products

Calculations for carbon in harvested wood products (HWP) are separate from the ecosystem estimates because the underlying datasets and methods are compiled separately. These methods are based on Eggleston et al. (2006) guidance for estimating HWP carbon (Skog 2008). Eggleston et al. (2006) provide methods that estimate HWP contribution using one of several different accounting approaches: production, stock change, and atmospheric flow, as well as a default method that assumes there is no change in HWP carbon stocks (see Annex 3.13 of EPA 2015 for more details about each approach). The U.S. GHG Inventory used the production accounting approach to report HWP contribution. Under the production approach, carbon in exported wood was estimated as if it remained in the United States, and carbon in imported wood was not included in inventory estimates. Annual estimates of change were calculated by tracking the additions to and removals from the pool of products held in end uses (i.e., products in use such as housing or publications) and the pool of products held in solid waste disposal.

# 4.6 Major Changes Compared to Previous Inventories

The estimates provided in Table 4-2 reflect a substantial number of incremental changes in methods and data between EPA (2010) and EPA (2015) in terms of net stock change since 1990. New annual inventory data for most States and adjustments to the identification of land area classified as forests included in the inventories have affected stock totals and changes. In addition, major changes in carbon conversion factors as applied to live and standing dead trees as well as the down dead wood and litter pools affected estimates as each update was implemented. When reviewing estimates provided for the 1990-to-present interval, it is important to note that data updates and methodological changes can affect stock and stock change estimates throughout the interval, as can be seen when comparing Table 4-2 with past versions of the same in USDA or EPA reports. See the methods (above) for general descriptions of new approaches, and compare EPA 2010 and 2015 for additional details and citations related to changes in the methods. The estimates for down dead wood have also been slightly modified—see the citations above and in the respective EPA annexes for additional information.

## 4.7 Uncertainty

Uncertainty estimates in this chapter are consistent with the IPCC-recommended methodology (Eggleston et al. 2006). Separate analyses were produced for forest ecosystem and HWP flux. The uncertainty estimates are from Monte Carlo simulations of the respective models and input data. Methods generally follow those described in Heath and Smith (2000), Smith and Heath (2001), Skog et al. (2004), and Skog (2008). Uncertainties surrounding input data or model processes were quantified as probability distribution functions, so that a series of sample values could be selected from the distributions. The separate results from the ecosystem and HWP simulations were pooled for total uncertainty.

Carbon stocks were based on forest plot-level calculations, and the Monte Carlo simulations for uncertainty estimates include probabilistic sampling at the plot level. That is, the deterministic stock change calculations of Smith et al. (2010) were repeated many times following the probabilistic sampling of input starting conditions. Uncertainty surrounding carbon density was defined for each of six pools for each inventory plot. Live and standing dead trees were generally assigned normal probability distributions, which vary according to species, number of trees, and area representation. Error estimates for volume and the CRM for estimating biomass are not available, so an assumed 10-percent error on biomass from volume was applied to the volume portion of the estimate; error information in Jenkins et al. (2003) was applied to uncertainty about the additional components (e.g., tops, leaves, and roots). Uniform probability distributions with a range of  $\pm 90$  percent of the average were used for those plots that used carbon densities from similarly classified forest stands.

Probability distributions for the remaining C pools are triangular or uniform, which partly reflects the lower level of information available about these estimates. The functions defined for these four pools were sampled as marginal distributions. Downed dead wood, understory, and litter were assigned triangular distributions with the mean at the expected value for each plot and the minimum and mode at 10 percent of the expected value. In this method, we assumed that a small proportion of plots would have relatively high carbon densities. Soil organic carbon was defined as a uniform distribution at  $\pm 50$ percent of the mean. Sub-State or State total carbon stocks associated with each survey are the cumulative sum of random samples from the plot-level of the







functions, which were then appropriately expanded to population estimates. These expected values for each carbon pool include uncertainty associated with sampling, which was also incorporated in the Monte Carlo simulation. Sampling errors were determined according to methods described for the FIADB (Bechtold and Patterson 2005), were assumed to be normally distributed, and were assigned a slight positive correlation between successive surveys for Monte Carlo sampling. More recent annual inventories were assigned higher sampling correlation between successive surveys based on the proportion of plot data jointly included in each. Errors for older inventory data are not available, and these surveys were assigned values consistent with those obtained from the FIADB.

Uncertainty about net carbon flux in HWP is based on Skog et al. (2004) and Skog (2008). Estimates of the HWP variables and HWP contribution under the production approach are subject to many sources of uncertainty. The uncertainty estimate for HWP resulted from our evaluation of the effect of uncertainty in 13 sources, including production and trade data and parameters used to make the estimate. Uncertain data and parameters include: (a) data on production and trade and factors to convert them to carbon, (b) the census-based estimate of carbon in housing in 2001, (c) the EPA estimate of wood and paper discarded to solid waste disposal sites (SWDS) for 1990 to 2000, (d) the limits on decay of wood and paper in SWDS, (e) the decay rate (half-life) of wood and paper in SWDS, (f) the proportion of products produced in the United States made with wood harvested in the United States, and (g) the rate of storage of wood and paper carbon in other countries that came from United States harvest, compared to storage in the United States.

## 4.8 Planned Improvements

Developing improved monitoring and reporting techniques is a continuous process that occurs simultaneously with annual U.S. GHG Inventory submissions. Only forest carbon monitoring techniques that are reviewed and published are adopted as part of the forest carbon contribution to the U.S. GHG Inventory. Planned improvements can be broadly assigned to the following categories: pool estimation techniques, land use and land use change, and field inventories.

In an effort to reduce the uncertainty associated with the estimation of individual forest C pools, we are evaluating the empirical data and associated models for each pool for potential improvement (Woodall 2012). The exact timing of future pool estimation refinements is dependent on the vetting of current research outcomes. Research is underway to use a national inventory of SOC (Domke et al. in review) to refine estimates of these pools following the methods applied for litter (Domke et al. 2016). We expect that improvements to SOC estimates will be incorporated into the 2016 U.S. GHG Inventory submission. Despite a consistent nationwide, annual field survey of forests, additional research advances are needed to attain a complete, consistent, and accurate time series of annual land use and land-use change matrices from 1990 to the present report year. The stock change estimates in the 2016 submission will address changes in forest land use classifications. Researchers are exploring techniques for bringing together disparate sets of land use information (e.g., forest versus croplands) that rely on remotely sensed imagery from the 1980s to the present.

The ongoing annual surveys by the FIA Program are expected to improve the precision of forest carbon estimates as new State surveys become available (USDA Forest Service 2015c), particularly in Western States. As of July 21, 2014, Hawaii was the only State not yet reporting data from the annualized sampling design of FIA. The annual surveys will eventually include Hawaii. In addition, data from more intensive sampling of fine woody debris, litter, and SOC on some of the permanent FIA plots will substantially improve resolution of carbon pools (i.e., greater sample intensity) (Westfall et al. 2013) at the plot level for all U.S. forest land.

#### SUGGESTED CITATION

Smith, J.E., C.W. Woodall, and G. Domke, 2016. Chapter 4: Carbon Stocks and Stock Changes in U.S. Forests. In U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2013, Technical Bulletin No. 1943, United States Department of Agriculture, Office of the Chief Economist, Washington, DC. 137 pp. September 2016. Del Grosso S.J. and M. Baranski, Eds.

## 4.9 References

Amichev, B.Y. and J.M. Galbraith (2004). A revised methodology for estimation of forest soil carbon from spatial soils and forest inventory data sets. Environmental Management, 33(S1):S74-S86.

Bechtold, William A.; Patterson, Paul L., Editors. (2005). The enhanced Forest Inventory and Analysis program—national sampling design and estimation procedures. Gen. Tech. Rep. SRS-80. Asheville, NC: United States Department of Agriculture, Forest Service, Southern Research Station. 85 p.

Coulston, J.W., Woodall, C.W., Domke, G.M., and Walters, B.F. In Review. Refined forest land use classification with implications for United States national carbon accounting. Intended outlet: Land Use Policy.

Domke, G.M., J.E. Smith, and C.W. Woodall (2011). Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States. Carbon Balance and Management. 6:14.

Domke, G.M., Woodall, C.W., Walters, B.F., Smith, J.E. (2013). From models to measurements: comparing down dead wood carbon stock estimates in the U.S. forest inventory. PLoS ONE 8(3): e59949.

Domke, G.M., Walters, B.F., Perry, C.H., Woodall, C.W., Russell, M.B., Smith, J.E. 2016. Estimating litter carbon stocks on forest land in the United States. Science of the Total Environment 557-558: 469-478.

Domke, G.M., Perry, C.H., Walters, B.F., Woodall, C.W., Nave, L., Swanston, C. In review. Toward inventory-based estimates of soil organic carbon in forests of the United States Intended outlet: Ecological Applications.

Eggleston, S., L. Buendia, K. Miwa, T. Ngara, and K. Tanabe (Ed.) (2006). 2006 IPCC guidelines for national greenhouse gas inventories, vol. 4: agriculture, forestry and other land use. Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme, Technical Support Unit, Kanagawa, Japan.

EPA (2010). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2008. EPA 430-R-10-006. United States Environmental Protection Agency, Office of Atmospheric Programs, Washington, DC. Available at: http://www.epa.gov/ climatechange/ghgemissions/usinventoryreport/archive.html Accessed 08 April 2015.

EPA (2015). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013. EPA 430-R-15-004. U. S. Environmental Protection Agency, Office of Atmospheric Programs, Washington, DC. Available at: http://www.epa.gov/climatechange/ ghgemissions/usinventoryreport.html Accessed 15 April 2015.

Harmon, M.E., C.W. Woodall, B. Fasth, J. Sexton, M. Yatkov (2011). Differences between standing and downed dead tree wood density reduction factors: A comparison across decay classes and tree species. Res. Paper. NRS-15. Newtown Square, PA: United States Department of Agriculture, Forest Service, Northern Research Station. 40 p.

Heath, L.S. and J.E. Smith (2000). An assessment of uncertainty in forest carbon budget projections. Environmental Science and Policy, 3:73-82.

Heath, L.S., J.E. Smith, and R.A. Birdsey (2003). Carbon trends in U.S. forest lands: A context for the role of soils in forest carbon sequestration. P. 35–45 in The potential of US forest soils to sequester carbon and mitigate the greenhouse effect, Kimble, J.M., L.S. Heath, R.A. Birdsey, and R. Lal (eds.). CRC Press, New York.

Ogle, S.M., Woodall, C.W., Swan, A., Smith, J., and Wirth. T. (in preparation). Determining the Managed Land Base for Delineating Carbon Sources and Sinks in the United States. Environmental Science and Policy.

Oswalt, S.N.; Smith, W.B; Miles, P.D.; Pugh, S.A. (2014). Forest Resources of the United States, 2012: a technical document supporting the Forest Service 2015 update of the RPA Assessment. Gen. Tech. Rep. WO-91. Washington, DC: United States Department of Agriculture, Forest Service, Washington Office. 218 p.

Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, T., Wagner, F., (Ed.) (2003). Good practice guidance for land use, land use change, and forestry. Institute for Global Environmental Strategies for the Intergovernmental Panel on Climate Change. Hayama, Kanagawa, Japan, 502 p.

Perez-Garcia, J., B. Lippke, J. Comnick, and C. Manriquez (2005). An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood and Fiber Science, 37:140-148.



Skog, K.E., K. Pingoud, and J.E. Smith (2004). A method countries can use to estimate changes in carbon stored in harvested wood products and the uncertainty of such estimates. Environmental Management, 33(S1): S65-S73.

Skog, K.E. (2008). Sequestration of carbon in harvested wood products for the United States. In preparation.

Smith, J.E. and L.S. Heath (2001). Identifying influences on model uncertainty: an application using a forest carbon budget model. Environmental Management, 27:253-267.

Smith, J.E., L.S. Heath, K.E. Skog, and R.A. Birdsey (2006). Methods for calculating forest ecosystem and harvested carbon, with standard estimates for forest types of the United States. General technical report NE-343. United States Department of Agriculture, Forest Service, Northeastern Research Station, Newtown Square, PA.

Smith, J.E., L.S. Heath, and M.C. Nichols (2010). U.S. forest carbon calculation tool: forest-land carbon stocks and net annual stock change. Revised. Gen. Tech. Rep. NRS-13. Newtown Square, PA: United States Department of Agriculture, Forest Service, Northern Research Station. 34 p. [DVD-ROM].

Smith, J.E., and L.S. Heath (2011). Carbon stocks & stock changes in U.S. forests. pp. 68-82 in The US Agriculture and Forestry Greenhouse Gas Inventory: 1990-2008. Technical Bulletin No. 1930, Washington DC: US Department of Agriculture, Office of the Chief Economist, Global Change Program Office. 159 p.

Smith, J.E., L.S. Heath, and C.M. Hoover (2013). Carbon factors and models for forest carbon estimates for the 2005–2011 National Greenhouse Gas Inventories of the United States. Forest Ecology and Management 307:7–19.

Smith, J.E., and L.S. Heath (2015). Measuring and modeling carbon stock change estimates for US forests and uncertainties from apparent inter-annual variability. P. 111-127 in Synthesis and modeling of greenhouse gas emissions and carbon storage in agricultural and forest systems to guide mitigation and adaptation, Del Grosso, S., W. Parton, L. Ahuja (eds.). Madison, WI: American Society of Agronomy, Crop Science Society of America, Inc., and Soil Science Society of America.

USDA Forest Service (2015a). Forest Inventory and Analysis National Program, FIA library: Database Documentation. United States Department of Agriculture, Forest Service, Washington Office. Available online at < http://www.fia.fs.fed.us/library/ database-documentation/ >. Accessed 08 April 2015. USDA Forest Service (2015b). Forest Inventory and Analysis National Program: Program Features. United States Department of Agriculture Forest Service. Washington, DC. Available online at < http://fia.fs.fed.us/program-features/>. Accessed 08 April 2015.

USDA Forest Service (2015c). Forest Inventory and Analysis National Program: FIA Data Mart. United States Department of Agriculture Forest Service. Washington, DC. Available online at <http://apps.fs.fed.us/fiadb-downloads/datamart.html>. Accessed 08 April 2015.

USDA (1991). State Soil Geographic (STATSGO) Data Base Data use information. Miscellaneous Publication Number 1492, National Soil Survey Center, Natural Resources Conservation Service, United States Department of Agriculture, Fort Worth, TX.

Woodall, C.W. (2012). Where did the U.S. forest biomass/carbon go? Journal of Forestry. 110: 113-114.

Woodall, C.W., and V.J. Monleon (2008). Sampling protocol, estimation, and analysis procedures for the down woody materials indicator of the FIA program. Gen. Tech. Rep. NRS-22. Newtown Square, PA: United States Department of Agriculture, Forest Service, Northern Research Station. 68 p.

Woodall, C.W., L.S. Heath, G.M. Domke, and M.C. Nichols (2011). Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. Gen. Tech. Rep. NRS-88. Newtown Square, PA: United States Department of Agriculture, Forest Service, Northern Research Station. 30 p.

Woodall, C.W., Walters, B.F., Oswalt, S.N., Domke, G.M., Toney, C., Gray, A.N. (2013). Biomass and carbon attributes of downed woody materials in forests of the United States. Forest Ecology and Management 305: 48-59.

Westfall, J.A., Woodall, C.W., Hatfield, M.A. (2013). A statistical power analysis of woody carbon flux from forest inventory data. Climatic Change. 118: 919-931.

Wilson, B.T., Woodall, C.W., Griffith, D. (2013). Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. Carbon Balance and Management. 8: 1.



## 4.10 Appendix C

Appendix Table C-1. Summary total from most recent survey data according to region, ownership, and forest type group for (a) current forest land area and (b) total stocks of carbon in live trees.

Appendix Table C-2. State-level annualized estimates for 2013 for: forest area, live tree stocks, non-soil stocks, soil organic carbon stocks, net annual stock change for live trees, and net annual stock change for total non-soil stocks.

Appendix Table C-3. Forest ecosystem carbon density based on most recent forest inventories according to stand age class, region, and ownership for three carbon pools – live tree, total non-soil, and soil organic carbon – as well as forest area. Note that the ownership classification is somewhat different; all reserved forest lands are combined in "reserved," and the balance are classified according to private versus public ownership.

Appendix Table C-4. Forest ecosystem carbon density based on most recent forest inventories according to stand size class, region, and ownership for three carbon pools – live tree, total non-soil, and soil organic carbon – as well as forest area. Note that the ownership classification is somewhat different; all reserved forest lands are combined in "reserved," and the balance are classified according to private versus public ownership.





| Region:                     | Pacific Coast |                 |         | Rocky Mountain |                 |         | North   |                 |         | South   |                 |         |
|-----------------------------|---------------|-----------------|---------|----------------|-----------------|---------|---------|-----------------|---------|---------|-----------------|---------|
| Ownership group:            | Federal       | Other<br>Public | Private | Federal        | Other<br>Public | Private | Federal | Other<br>Public | Private | Federal | Other<br>Public | Private |
| Forest Type Group           |               |                 |         |                |                 | 1,000   | ha      |                 |         |         |                 |         |
| White/Red/Jack Pine         |               |                 |         |                |                 |         | 545     | 889             | 2,258   | 63      | 8               | 126     |
| Spruce/Fir                  | 226           | 76              | 55      |                |                 |         | 746     | 1,758           | 3,798   | 5       | 5               | 3       |
| Longleaf/Slash Pine         |               |                 |         |                |                 |         |         |                 |         | 829     | 573             | 3,883   |
| Loblolly/Shortleaf Pine     |               |                 |         |                |                 |         | 93      | 215             | 360     | 1,767   | 562             | 21,028  |
| Other Eastern Softwoods     |               |                 |         |                |                 |         | 9       | 16              | 417     | 32      | 24              | 681     |
| Pinyon/Juniper              | 485           | 20              | 56      | 10,486         | 934             | 5,129   | 35      | 5               | 32      | 51      | 92              | 2,159   |
| Douglas-Fir                 | 3,820         | 796             | 3,796   | 5,186          | 327             | 1,617   |         | 0               | 2       |         |                 |         |
| Ponderosa Pine              | 2,204         | 138             | 1,523   | 2,813          | 270             | 1,865   | 333     | 26              | 184     |         |                 |         |
| Western White Pine          | 83            |                 |         | 10             | 3               | 13      |         |                 |         |         |                 |         |
| Fir/Spruce/Mountain Hemlock | 5,205         | 168             | 692     | 7,996          | 241             | 790     |         |                 | 10      |         |                 |         |
| Lodgepole Pine              | 1,360         | 47              | 264     | 4,159          | 74              | 349     |         |                 |         |         |                 |         |
| Hemlock/Sitka Spruce        | 2,792         | 525             | 1,037   | 272            | 44              | 127     |         |                 |         |         |                 |         |
| Western Larch               | 168           | 17              | 44      | 318            | 44              | 104     |         |                 |         |         |                 |         |
| Redwood                     | 20            | 34              | 240     |                |                 |         |         |                 |         |         |                 |         |
| Other Western Softwoods     | 1,395         | 49              | 560     | 892            | 62              | 120     |         |                 |         |         |                 |         |
| California Mixed Conifer    | 2,311         | 33              | 881     |                |                 |         |         |                 |         |         |                 |         |
| Exotic Softwoods            |               |                 |         |                |                 |         |         | 44              | 227     |         |                 |         |
| Other Softwoods             |               |                 |         |                |                 |         |         |                 | 2       |         |                 |         |
| Oak/Pine                    |               |                 |         |                |                 |         | 232     | 387             | 1,789   | 902     | 399             | 7,821   |
| Oak/Hickory                 |               |                 | 0       | 14             |                 | 30      | 1,553   | 3,525           | 21,464  | 3,503   | 1,267           | 31,835  |
| Oak/Gum/Cypress             |               |                 |         |                |                 |         | 27      | 75              | 196     | 1,077   | 887             | 7,935   |
| Elm/Ash/Cottonwood          | 67            | 63              | 113     | 62             | 31              | 184     | 333     | 897             | 4,647   | 300     | 309             | 4,279   |
| Maple/Beech/Birch           |               |                 |         |                |                 |         | 1,422   | 3,049           | 14,034  | 129     | 28              | 610     |
| Aspen/Birch                 | 182           | 37              | 138     | 2,307          | 93              | 660     | 906     | 1,914           | 3,870   | 2       |                 | 4       |
| Alder/Maple                 | 176           | 222             | 851     | 4              | 3               | 2       |         |                 |         |         |                 |         |
| Western Oak                 | 1,439         | 195             | 2,490   |                |                 |         |         |                 |         |         |                 |         |
| Tanoak/Laurel               | 391           | 66              | 584     |                |                 |         |         |                 |         |         |                 |         |
| Other Hardwoods             | 198           | 37              | 254     | 6              | 1               | 3       | 86      | 216             | 552     | 67      | 16              | 335     |
| Woodland Hardwoods          | 180           | 10              | 56      | 1,964          | 184             | 1,026   |         |                 |         | 30      | 121             | 4,655   |
| Tropical Hardwoods          |               |                 |         |                |                 |         |         |                 |         | 57      | 129             | 118     |
| Exotic Hardwoods            | 1             |                 | 1       |                | 2               | 6       | 0       | 15              | 92      | 9       | 26              | 395     |
| Nonstocked                  | 667           | 47              | 376     | 2.295          | 196             | 863     | 90      | 116             | 510     | 88      | 125             | 2.207   |

#### Appendix Table C-1a Current Forest Land Area According to Region, Ownership, and Forest Type Group, 2013

Notes:

See USDA Forest Service (2015a) for additional details on how classifications are defined.

Carbon densities are based on the most recent inventory per state for shaded area in Map 4-1.

Blank indicates that the type group does not appear within the inventory for that region and ownership, zeros are the result of rounding a small quantity.



| Region:                                   | Р       | acific Co | ast     | Roc     | ky Moun | tain    |         | North  |         |         | South  |         |
|-------------------------------------------|---------|-----------|---------|---------|---------|---------|---------|--------|---------|---------|--------|---------|
| 0                                         |         | Other     |         |         | Other   |         |         | Other  |         |         | Other  |         |
| Ownership group:                          | Federal | Public    | Private | Federal | Public  | Private | Federal | Public | Private | Federal | Public | Private |
| Forest Type Group                         |         |           |         |         |         | 1,000   | ha      |        |         |         |        |         |
| White/Red/Jack Pine                       |         |           |         |         |         |         | 130     | 220    | 638     | 26      | 4      | 39      |
| Spruce/Fir                                | 14      | 2         | 3       |         |         |         | 117     | 230    | 593     | 2       | 1      | 1       |
| Longleaf/Slash Pine                       |         |           |         |         |         |         |         |        |         | 192     | 94     | 674     |
| Loblolly/Shortleaf Pine                   |         |           |         |         |         |         | 25      | 48     | 83      | 572     | 145    | 4,269   |
| Other Eastern Softwoods                   |         |           |         |         |         |         | 1       | 1      | 34      | 6       | 3      | 61      |
| Pinyon/Juniper                            | 24      | 1         | 2       | 683     | 57      | 296     | 2       | 0      | 2       | 4       | 4      | 113     |
| Douglas-Fir                               | 2,620   | 455       | 1,324   | 1,191   | 64      | 272     |         | 0      | 1       |         |        |         |
| Ponderosa Pine                            | 483     | 22        | 234     | 472     | 36      | 234     | 47      | 3      | 22      |         |        |         |
| Western White Pine<br>Fir/Spruce/Mountain | 18      |           |         | 1       | 1       | 2       |         |        |         |         |        |         |
| Hemlock                                   | 2,092   | 57        | 145     | 1,913   | 58      | 139     |         |        | 1       |         |        |         |
| Lodgepole Pine                            | 260     | 6         | 41      | 802     | 11      | 52      |         |        |         |         |        |         |
| Hemlock/Sitka Spruce                      | 1,812   | 310       | 404     | 142     | 13      | 33      |         |        |         |         |        |         |
| Western Larch                             | 58      | 4         | 9       | 90      | 14      | 17      |         |        |         |         |        |         |
| Redwood                                   | 44      | 73        | 182     |         |         |         |         |        |         |         |        |         |
| Other Western Softwoods                   | 85      | 2         | 27      | 109     | 3       | 8       |         |        |         |         |        |         |
| California Mixed Conifer                  | 1,179   | 20        | 275     |         |         |         |         |        |         |         |        |         |
| Exotic Softwoods                          |         |           |         |         |         |         |         | 11     | 44      |         |        |         |
| Other Softwoods                           |         |           |         |         |         |         |         |        | 0       |         |        |         |
| Oak/Pine                                  |         |           |         |         |         |         | 50      | 93     | 430     | 240     | 84     | 1,504   |
| Oak/Hickory                               |         |           | 1       | 0       |         | 1       | 463     | 1,087  | 5,947   | 1,097   | 330    | 6,757   |
| Oak/Gum/Cypress                           |         |           |         |         |         |         | 7       | 25     | 60      | 287     | 303    | 2,145   |
| Elm/Ash/Cottonwood                        | 23      | 18        | 20      | 9       | 3       | 25      | 72      | 184    | 1,001   | 56      | 59     | 714     |
| Maple/Beech/Birch                         |         |           |         |         |         |         | 486     | 1,028  | 3,896   | 49      | 10     | 164     |
| Aspen/Birch                               | 21      | 4         | 16      | 336     | 14      | 79      | 145     | 246    | 567     | 0       |        | 1       |
| Alder/Maple                               | 66      | 97        | 268     | 0       | 0       | 0       |         |        |         |         |        |         |
| Western Oak                               | 334     | 38        | 452     |         |         |         |         |        |         |         |        |         |
| Tanoak/Laurel                             | 175     | 44        | 287     |         |         |         |         |        |         |         |        |         |
| Other Hardwoods                           | 42      | 14        | 58      | 0       | 0       | 0       | 11      | 40     | 82      | 18      | 3      | 32      |
| Woodland Hardwoods                        | 9       | 1         | 4       | 110     | 8       | 64      |         |        |         | 1       | 5      | 175     |
| Tropical Hardwoods                        |         |           |         |         |         |         |         |        |         | 3       | 16     | 14      |
| Exotic Hardwoods                          | 0       |           | 0       |         | 0       | 0       | 0       | 2      | 12      | 1       | 3      | 31      |
| Nonstocked                                | 6       | 1         | 4       | 12      | 1       | 5       | 1       | 1      | 5       | 1       | 1      | 9       |

#### Appendix Table C-1b Current Forest Carbon Stocks in Live Trees According to Region, Ownership, and Forest Type Group, 2013

Notes:

See USDA Forest Service (2015a) for additional details on how classifications are defined.

Carbon densities are based on the most recent inventory per state for shaded area in Map 4-1.

Blank indicates that the type group does not appear within the inventory for that region and ownership, zeros are the result of rounding a small quantity. MMT  $CO_2$  eq. is million metric tons carbon dioxide equivalent.



# \*

|                  | Forest area | Live tree stock | Total non-soil | Soil organic | Live tree net                | Total non-soil net          |
|------------------|-------------|-----------------|----------------|--------------|------------------------------|-----------------------------|
| State            |             |                 | stock          | carbon stock | stock change                 | stock change                |
|                  | 1,000 ha    | MMT CO2 eq.     | MMT CO2 eq.    | MMT CO2 eq.  | MMT CO2 eq. yr <sup>-1</sup> | MMT CO2 eq. yr <sup>1</sup> |
| Alabama          | 9,272       | 1,927           | 2,495          | 1,457        | (28.8)                       | (30.1)                      |
| Alaska (Coastal) | 5,841       | 2,049           | 3,165          | 1,865        | (3.5)                        | (2.5)                       |
| Arizona          | 6,234       | 543             | 864            | 510          | 5.3                          | 5.8                         |
| Arkansas         | 7,675       | 1,670           | 2,128          | 1,187        | (21.7)                       | (22.6)                      |
| California       | 13,022      | 4,212           | 5,660          | 1,864        | (36.2)                       | (38.8)                      |
| Colorado         | 8,435       | 1,319           | 2,119          | 966          | 6.6                          | (1.9)                       |
| Connecticut      | 702         | 259             | 324            | 159          | (4.1)                        | (4.3)                       |
| Delaware         | 141         | 49              | 62             | 36           | (0.4)                        | (0.2)                       |
| Florida          | 6,990       | 1,215           | 1,787          | 2,657        | (15.4)                       | (15.5)                      |
| Georgia          | 10,017      | 2,210           | 2,690          | 3,047        | (21.1)                       | (21.7)                      |
| Idaho            | 8,626       | 1,816           | 2,868          | 1,295        | (1.1)                        | (5.3)                       |
| Illinois         | 1,984       | 504             | 600            | 412          | (8.2)                        | (9.5)                       |
| Indiana          | 1,973       | 548             | 663            | 383          | (7.0)                        | (8.3)                       |
| Iowa             | 1.201       | 248             | 318            | 246          | (3.7)                        | (4.5)                       |
| Kansas           | 1.045       | 177             | 228            | 308          | (4.0)                        | (5.2)                       |
| Kentucky         | 5.063       | 1.359           | 1.650          | 754          | (14.5)                       | (15.3)                      |
| Louisiana        | 6.018       | 1 239           | 1 584          | 1.026        | (13.3)                       | (15.4)                      |
| Maine            | 7 1 37      | 1 455           | 2,093          | 2,152        | (10.7)                       | (11.7)                      |
| Maryland         | 990         | 368             | 447            | 231          | (3.0)                        | (3.0)                       |
| Massachusetts    | 1 225       | 434             | 534            | 308          | (4.6)                        | (4.7)                       |
| Michigan         | 8 2 3 8     | 1 784           | 2 360          | 4 463        | (26.9)                       | (33.6)                      |
| Minnesota        | 7 033       | 1,004           | 1,508          | 4 290        | (10.4)                       | (15.0)                      |
| Mississippi      | 7 879       | 1 689           | 2,100          | 1,265        | (33.4)                       | (33.0)                      |
| Missouri         | 6 2 5 3     | 1 305           | 1 645          | 1 116        | (12.5)                       | (16.3)                      |
| Montana          | 10 251      | 1 712           | 2.962          | 1 486        | (0.9)                        | (18.7)                      |
| Nebraska         | 623         | 95              | 126            | 158          | (1.5)                        | (2.2)                       |
| Nevada           | 3.547       | 206             | 371            | 284          | (0.5)                        | 0.3                         |
| New Hampshire    | 1 956       | 589             | 760            | 526          | (4.6)                        | (4.8)                       |
| New Jersev       | 796         | 232             | 295            | 199          | (2.6)                        | (2.3)                       |
| New Mexico       | 7.115       | 626             | 1.033          | 606          | 0.9                          | 0.1                         |
| New York         | 7.691       | 2.294           | 2.941          | 2.026        | (19.3)                       | (23.8)                      |
| North Carolina   | 7.536       | 2.008           | 2.493          | 1.974        | (27.6)                       | (28.4)                      |
| North Dakota     | 309         | 39              | .57            | 86           | (0.4)                        | (0.4)                       |
| Ohio             | 3 297       | 974             | 1 1 56         | 774          | (10.5)                       | (12.2)                      |
| Oklahoma         | 4.913       | 574             | 839            | 763          | (2.5)                        | (2.7)                       |
| Oregon           | 12.061      | 4 288           | 5 855          | 3 516        | (51.7)                       | (52.7)                      |
| Pennsylvania     | 6.778       | 2.139           | 2.680          | 1.540        | (19.8)                       | (23.4)                      |
| Rhode Island     | 147         | 50              | 62             | 34           | (1.2)                        | (1.2)                       |
| South Carolina   | 5 279       | 1 294           | 1 582          | 1 570        | (21.8)                       | (21.6)                      |
| South Dakota     | 781         | 94              | 139            | 161          | (0.1)                        | (0.8)                       |
| Tennessee        | 5 633       | 1 581           | 2,095          | 836          | (8.2)                        | (10.4)                      |
| Texas            | 18 856      | 1 695           | 2,730          | 3 373        | (1.2)                        | (1.2)                       |
| Utah             | 5 962       | 572             | 967            | 586          | 5.2                          | 11                          |
| Vermont          | 1,860       | 583             | 759            | 500          | (4.7)                        | (4.9)                       |
| Virginia         | 6 428       | 1 857           | 2 329          | 1 352        | (18.8)                       | (18.6)                      |
| Washington       | 0,120       | 3 740           | 5 370          | 2 849        | (24.8)                       | (33.7)                      |
| West Virginia    | 4 921       | 1 651           | 1 967          | 1 051        | (20.5)                       | (23.3)                      |
| Wisconsin        | 6 921       | 1 317           | 1 725          | 3 569        | (15.1)                       | (10.1)                      |
| Wyoming          | 4 010       | 583             | 1 115          | 445          | 12.6                         | 83                          |
| Notos:           | ,,010       | 505             | 1,115          | 115          | 12.0                         | 0.5                         |

Carbon stocks, stock changes, and forest areas are based on annualized estimates for 2013 for shaded area in Map 4-1.

Parentheses (i.e., negative net annual change) indicate net forest ecosystem sequestration, by convention.

Note that total non-soil stock and stock change also includes live trees.

MMT CO2 eq. is million metric tons carbon dioxide equivalent. MMT CO2 eq. yr.1 is million metric tons carbon dioxide equivalent per year.

| Appendix Table C-3a Mean Carbon Density, Range of Plot-Level Densities, and Forest Area on Publicly Owned |
|-----------------------------------------------------------------------------------------------------------|
| Forestland (non-reserved) by Region and Stand-Age Class, 2013                                             |

| Region         | Stand age<br>class | Live tree<br>carbon density | Live tree 5 <sup>th</sup><br>and 95 <sup>th</sup><br>percentiles | Total non-soil<br>carbon density | Total non-soil<br>5 <sup>th</sup> and 95 <sup>th</sup><br>percentiles | Soil organic<br>carbon density | Forest<br>area |
|----------------|--------------------|-----------------------------|------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------|--------------------------------|----------------|
| 1051011        | Years              | $MT CO_2 eq/ha$             | $MT CO_2 eq/ha$                                                  | $MT CO_2 eq/ha$                  | $MT CO_2 eq/ha$                                                       | $MT CO_2 eq/ha$                | 1,000<br>ha    |
| Pacific Coast  | <20                | 36.7                        | 0 - 161                                                          | 178.3                            | 69 - 427                                                              | 253                            | 1,363          |
| Pacific Coast  | 20-40              | 194.3                       | 5 - 558                                                          | 317.3                            | 81 - 745                                                              | 291                            | 1,692          |
| Pacific Coast  | 40-60              | 339.1                       | 8 - 942                                                          | 464.8                            | 66 - 1134                                                             | 271                            | 1,541          |
| Pacific Coast  | 60-80              | 350.0                       | 11 – 1119                                                        | 478.3                            | 69 - 1339                                                             | 244                            | 2,513          |
| Pacific Coast  | 80-100             | 357.4                       | 22 - 1047                                                        | 490.6                            | 80 - 1281                                                             | 237                            | 2,538          |
| Pacific Coast  | 100-150            | 460.8                       | 19 - 1301                                                        | 614.5                            | 83 - 1530                                                             | 241                            | 3,649          |
| Pacific Coast  | 150-200            | 496.9                       | 22 - 1338                                                        | 675.4                            | 90 - 1610                                                             | 263                            | 1,906          |
| Pacific Coast  | 200+               | 646.5                       | 49 – 1544                                                        | 864.6                            | 127 - 1880                                                            | 304                            | 2,587          |
| Pacific Coast  | unknown            | 375.6                       | 3 - 1272                                                         | 517.3                            | 48 - 1579                                                             | 217                            | 1,269          |
| Rocky Mountain | <20                | 23.6                        | 0 - 95                                                           | 124.4                            | 37 - 303                                                              | 127                            | 4,652          |
| Rocky Mountain | 20-40              | 62.2                        | 6 - 150                                                          | 153.8                            | 48 - 311                                                              | 138                            | 1,177          |
| Rocky Mountain | 40-60              | 103.9                       | 11 - 283                                                         | 178.5                            | 43 - 406                                                              | 125                            | 1,357          |
| Rocky Mountain | 60-80              | 158.3                       | 16 - 447                                                         | 243.4                            | 45 - 611                                                              | 126                            | 3,411          |
| Rocky Mountain | 80-100             | 179.0                       | 20 - 468                                                         | 270.7                            | 52 - 631                                                              | 120                            | 5,398          |
| Rocky Mountain | 100-150            | 192.6                       | 24 - 512                                                         | 292.2                            | 55 - 704                                                              | 113                            | 10,060         |
| Rocky Mountain | 150-200            | 168.5                       | 24 - 493                                                         | 259.2                            | 53 - 695                                                              | 102                            | 4,733          |
| Rocky Mountain | 200+               | 152.1                       | 25 - 488                                                         | 234.6                            | 55 - 660                                                              | 93                             | 1,973          |
| Rocky Mountain | unknown            | 151.2                       | 28 - 404                                                         | 240.9                            | 59 - 570                                                              | 94                             | 1,076          |
| North          | <20                | 43.1                        | 0 - 140                                                          | 106.0                            | 45 - 219                                                              | 471                            | 1,615          |
| North          | 20-40              | 122.6                       | 16 - 279                                                         | 182.8                            | 60 - 353                                                              | 443                            | 2,002          |
| North          | 40-60              | 201.3                       | 25 - 435                                                         | 268.6                            | 74 – 519                                                              | 434                            | 2,905          |
| North          | 60-80              | 270.9                       | 59 - 532                                                         | 347.9                            | 115 - 626                                                             | 401                            | 4,741          |
| North          | 80-100             | 322.3                       | 73 - 612                                                         | 403.6                            | 129 - 709                                                             | 368                            | 3,674          |
| North          | 100-150            | 312.9                       | 41 - 626                                                         | 393.4                            | 95 - 743                                                              | 416                            | 1,633          |
| North          | 150-200            | 237.9                       | 43 - 534                                                         | 314.7                            | 100 - 642                                                             | 582                            | 78             |
| North          | 200+               | 211.2                       | 211 - 211                                                        | 257.2                            | 257 - 257                                                             | 178                            | 1              |
| North          | unknown            | 429.3                       | 133 – 757                                                        | 524.9                            | 179 - 867                                                             | 334                            | 19             |
| South          | <20                | 62.2                        | 0 - 223                                                          | 120.6                            | 38 - 297                                                              | 249                            | 1,406          |
| South          | 20-40              | 200.0                       | 17 – 443                                                         | 264.9                            | 66 - 520                                                              | 247                            | 1,991          |
| South          | 40-60              | 264.0                       | 30 - 581                                                         | 330.2                            | 72 - 667                                                              | 229                            | 2,493          |
| South          | 60-80              | 327.8                       | 85 - 625                                                         | 401.0                            | 146 - 719                                                             | 207                            | 3,571          |
| South          | 80-100             | 367.9                       | 114 - 707                                                        | 448.5                            | 172 - 808                                                             | 228                            | 1,871          |
| South          | 100-150            | 391.7                       | 120 - 721                                                        | 479.7                            | 195 - 825                                                             | 225                            | 474            |
| South          | 150-200            | 679.3                       | 679 - 679                                                        | 786.2                            | 786 - 786                                                             | 154                            | 2              |

Note: MT  $\mathrm{CO}_2$  eq/ha is metric tons carbon dioxide equivalent per hectare.



| Region         | Stand age class | Live tree carbon<br>density | Live tree 5th<br>and 95th<br>percentiles | Total non-soil<br>carbon density | Total non-soil<br>5th and 95th<br>percentiles | Soil organic<br>carbon density | Forest<br>area |
|----------------|-----------------|-----------------------------|------------------------------------------|----------------------------------|-----------------------------------------------|--------------------------------|----------------|
|                | Years           | MT CO2 eq/ha                | MT CO2 eq/ha                             | MT CO2 eq/ha                     | MT CO2 eq/ha                                  | MT CO2 eq/ha                   | 1,000 ha       |
| Pacific Coast  | <20             | 56.2                        | 0 - 230                                  | 185.2                            | 84 - 377                                      | 317                            | 2,361          |
| Pacific Coast  | 20-40           | 298.4                       | 21 - 698                                 | 430.8                            | 98 - 877                                      | 318                            | 2,096          |
| Pacific Coast  | 40-60           | 383.5                       | 25 - 992                                 | 498.2                            | 81 - 1171                                     | 263                            | 2,310          |
| Pacific Coast  | 60-80           | 307.4                       | 18 - 958                                 | 410.0                            | 66 - 1113                                     | 230                            | 2,375          |
| Pacific Coast  | 80-100          | 331.4                       | 24 - 882                                 | 440.7                            | 75 - 1074                                     | 221                            | 1,737          |
| Pacific Coast  | 100-150         | 317.0                       | 19 - 1043                                | 426.6                            | 66 - 1231                                     | 216                            | 1,312          |
| Pacific Coast  | 150-200         | 403.3                       | 21 - 1288                                | 542.2                            | 64 - 1374                                     | 223                            | 290            |
| Pacific Coast  | 200+            | 433.2                       | 29 - 1363                                | 611.6                            | 96 - 1693                                     | 302                            | 203            |
| Pacific Coast  | unknown         | 182.6                       | 7 - 498                                  | 243.4                            | 44 - 583                                      | 120                            | 1,328          |
| Rocky Mountain | <20             | 22.4                        | 0 - 82                                   | 98.7                             | 39 - 188                                      | 125                            | 2,270          |
| Rocky Mountain | 20-40           | 56.0                        | 6 - 171                                  | 124.2                            | 37 - 275                                      | 127                            | 573            |
| Rocky Mountain | 40-60           | 88.3                        | 11 - 271                                 | 151.2                            | 40 - 385                                      | 125                            | 882            |
| Rocky Mountain | 60-80           | 110.3                       | 16 - 319                                 | 175.5                            | 43 - 435                                      | 116                            | 1,622          |
| Rocky Mountain | 80-100          | 131.4                       | 18 - 350                                 | 200.0                            | 42 - 472                                      | 110                            | 2,113          |
| Rocky Mountain | 100-150         | 123.6                       | 17 - 379                                 | 186.7                            | 41 - 508                                      | 98                             | 3,179          |
| Rocky Mountain | 150-200         | 93.8                        | 19 - 261                                 | 146.0                            | 45 - 393                                      | 83                             | 1,282          |
| Rocky Mountain | 200+            | 92.4                        | 21 - 207                                 | 139.9                            | 50 - 274                                      | 76                             | 570            |
| Rocky Mountain | unknown         | 85.1                        | 15 - 203                                 | 132.6                            | 41 - 264                                      | 77                             | 290            |
| North          | <20             | 45.1                        | 0 - 172                                  | 104.3                            | 40 - 239                                      | 367                            | 3,574          |
| North          | 20-40           | 138.4                       | 14 - 327                                 | 199.8                            | 57 - 401                                      | 332                            | 6,992          |
| North          | 40-60           | 229.4                       | 48 - 474                                 | 293.7                            | 96 - 559                                      | 308                            | 13,898         |
| North          | 60-80           | 289.8                       | 88 - 541                                 | 361.4                            | 142 - 632                                     | 298                            | 17,226         |
| North          | 80-100          | 319.4                       | 104 - 587                                | 396.0                            | 159 - 678                                     | 294                            | 9,545          |
| North          | 100-150         | 328.5                       | 107 - 599                                | 407.0                            | 160 - 699                                     | 302                            | 3,102          |
| North          | 150-200         | 333.8                       | 127 - 599                                | 424.6                            | 209 - 678                                     | 439                            | 89             |
| North          | 200+            | 562.1                       | 373 - 670                                | 634.8                            | 457 - 735                                     | 290                            | 3              |
| North          | unknown         | 402.1                       | 105 - 900                                | 491.2                            | 167 - 998                                     | 262                            | 14             |
| South          | <20             | 77.6                        | 0 - 246                                  | 132.6                            | 40 - 317                                      | 213                            | 24,831         |
| South          | 20-40           | 184.2                       | 14 - 418                                 | 240.5                            | 47 - 493                                      | 212                            | 21,996         |
| South          | 40-60           | 219.1                       | 17 - 510                                 | 277.4                            | 50 - 585                                      | 194                            | 20,516         |
| South          | 60-80           | 294.3                       | 40 - 608                                 | 361.3                            | 81 - 695                                      | 193                            | 15,222         |
| South          | 80-100          | 319.4                       | 30 - 679                                 | 391.0                            | 64 - 764                                      | 207                            | 4,338          |
| South          | 100-150         | 319.0                       | 26 - 730                                 | 390.1                            | 65 - 810                                      | 220                            | 1,101          |
| South          | 150-200         | 113.9                       | 19 - 429                                 | 171.3                            | 47 - 481                                      | 173                            | 68             |
| South          | unknown         | 24.2                        | 19 - 31                                  | 54.3                             | 50 - 60                                       | 183                            | 5              |

# Appendix Table C-3b Mean Carbon Density, Range of Plot-Level Densities, and Forest Area on Privately Owned Forestland (non-reserved) by Region and Stand-Age Class, 2013

Note: MT  $\mathrm{CO}_2$  eq/ha is metric tons carbon dioxide equivalent per hectare.



| , | Appen | dix Table C | -3c Mean   | Carbon D | ensity, | Range of | Plot-Level | Densities, | and Forest | Area on | Reserved | Forestland |
|---|-------|-------------|------------|----------|---------|----------|------------|------------|------------|---------|----------|------------|
|   | (both | public and  | private ои | nerships | ) by Re | gion and | Stand-Age  | Class, 201 | 3          |         |          |            |

|                | Stand age<br>class | Live tree carbon<br>density | Live tree 5th<br>and 95th | Total non-soil<br>carbon density | Total non-soil<br>5th and 95th | Soil organic<br>carbon | Forest<br>area |
|----------------|--------------------|-----------------------------|---------------------------|----------------------------------|--------------------------------|------------------------|----------------|
| Region         |                    | ,                           | percentiles               |                                  | percentiles                    | density                |                |
|                | Years              | MT CO2 eq/ha                | MT CO2 eq/ha              | MT CO2 eq/ha                     | MT CO2 eq/ha                   | MT CO2<br>eq/ha        | 1,000 ha       |
| Pacific Coast  | <20                | 25.4                        | 0 - 104                   | 235.8                            | 75 - 545                       | 234                    | 340            |
| Pacific Coast  | 20-40              | 98.6                        | 0 - 455                   | 233.8                            | 75 - 582                       | 228                    | 187            |
| Pacific Coast  | 40-60              | 214.9                       | 0 - 860                   | 356.0                            | 96 - 964                       | 236                    | 314            |
| Pacific Coast  | 60-80              | 269.6                       | 1 - 958                   | 408.6                            | 96 - 1197                      | 227                    | 564            |
| Pacific Coast  | 80-100             | 357.5                       | 10 - 993                  | 509.5                            | 91 - 1161                      | 219                    | 611            |
| Pacific Coast  | 100-150            | 437.2                       | 24 - 1197                 | 616.0                            | 116 - 1482                     | 236                    | 1,331          |
| Pacific Coast  | 150-200            | 502.5                       | 35 - 1238                 | 695.0                            | 111 - 1550                     | 234                    | 952            |
| Pacific Coast  | 200+               | 646.5                       | 88 - 1523                 | 878.9                            | 197 - 1981                     | 277                    | 1,811          |
| Pacific Coast  | unknown            | 470.2                       | 2 - 1333                  | 643.4                            | 54 - 1666                      | 203                    | 783            |
| Rocky Mountain | <20                | 16.9                        | 0 - 78                    | 175.8                            | 56 - 382                       | 134                    | 1,379          |
| Rocky Mountain | 20-40              | 52.9                        | 4 - 145                   | 144.1                            | 59 - 298                       | 139                    | 339            |
| Rocky Mountain | 40-60              | 92.4                        | 7 - 255                   | 174.4                            | 37 - 377                       | 126                    | 189            |
| Rocky Mountain | 60-80              | 136.1                       | 22 - 384                  | 227.7                            | 54 - 513                       | 123                    | 530            |
| Rocky Mountain | 80-100             | 178.0                       | 24 - 422                  | 286.0                            | 53 - 578                       | 123                    | 824            |
| Rocky Mountain | 100-150            | 190.7                       | 22 - 451                  | 318.4                            | 53 - 649                       | 117                    | 1,962          |
| Rocky Mountain | 150-200            | 202.6                       | 33 - 486                  | 329.3                            | 67 - 712                       | 111                    | 1,369          |
| Rocky Mountain | 200+               | 203.6                       | 30 - 549                  | 314.3                            | 61 - 694                       | 105                    | 625            |
| Rocky Mountain | unknown            | 253.1                       | 35 - 793                  | 380.5                            | 62 - 1008                      | 109                    | 343            |
| North          | <20                | 31.9                        | 0 - 122                   | 130.3                            | 50 - 230                       | 504                    | 93             |
| North          | 20-40              | 142.4                       | 20 - 384                  | 214.1                            | 69 - 448                       | 400                    | 118            |
| North          | 40-60              | 198.5                       | 35 - 386                  | 274.9                            | 84 - 484                       | 375                    | 359            |
| North          | 60-80              | 287.4                       | 90 - 542                  | 384.8                            | 159 - 636                      | 354                    | 774            |
| North          | 80-100             | 347.9                       | 91 - 620                  | 449.6                            | 183 - 734                      | 321                    | 952            |
| North          | 100-150            | 375.8                       | 98 - 612                  | 477.6                            | 170 - 748                      | 317                    | 557            |
| North          | 150-200            | 348.8                       | 131 - 574                 | 474.4                            | 188 - 723                      | 329                    | 30             |
| North          | unknown            | 510.1                       | 452 - 535                 | 652.5                            | 576 - 685                      | 410                    | 9              |
| South          | <20                | 27.3                        | 0 - 124                   | 101.1                            | 52 - 193                       | 419                    | 174            |
| South          | 20-40              | 111.5                       | 3 - 355                   | 173.3                            | 53 - 424                       | 419                    | 235            |
| South          | 40-60              | 187.1                       | 20 - 479                  | 262.1                            | 49 - 586                       | 371                    | 337            |
| South          | 60-80              | 327.7                       | 87 - 608                  | 419.7                            | 148 - 746                      | 298                    | 445            |
| South          | 80-100             | 389.7                       | 83 - 711                  | 485.9                            | 159 - 840                      | 226                    | 333            |
| South          | 100-150            | 382.1                       | 196 - 640                 | 505.8                            | 263 - 867                      | 238                    | 147            |
| South          | 150-200            | 576.5                       | 576 - 576                 | 666.5                            | 666 - 666                      | 166                    | 2              |

Notes:

See USDA Forest Service (2015a) for additional details on how classifications are defined.

Carbon densities and forest areas are based on the most recent inventory per state for shaded area in Map 4-1.

Note that total non-soil stock also includes live trees.

 $\rm MT~CO_2~eq/ha$  is metric tons carbon dioxide equivalent per hectare.



|                | Stand size class | Live tree      | Live tree 5th | Total non-soil | Total non-soil     | Soil organic | Forest   |
|----------------|------------------|----------------|---------------|----------------|--------------------|--------------|----------|
| Region         |                  | carbon density | percentiles   | carbon density | percentiles        | density      | area     |
| 0              |                  |                | 1             |                | MT CO <sub>2</sub> | , í          |          |
|                |                  | MT CO2 eq/ha   | MT CO2 eq/ha  | MT CO2 eq/ha   | eq/ha              | MT CO2 eq/ha | 1,000 ha |
| Pacific Coast  | large diameter   | 486.9          | 32 - 1324     | 651.0          | 90 - 1604          | 265          | 14,545   |
| Pacific Coast  | medium diameter  | 167.8          | 9 - 460       | 274.8          | 67 - 588           | 229          | 1,637    |
| Pacific Coast  | small diameter   | 43.7           | 0 - 143       | 154.1          | 54 - 321           | 242          | 2,342    |
| Pacific Coast  | nonstocked       | 11.4           | 0 - 51        | 160.8          | 67 - 437           | 229          | 533      |
| Rocky Mountain | large diameter   | 177.4          | 22 - 507      | 266.6          | 52 - 692           | 107          | 23,199   |
| Rocky Mountain | medium diameter  | 149.5          | 18 - 352      | 253.3          | 54 - 520           | 137          | 4,867    |
| Rocky Mountain | small diameter   | 46.1           | 0 - 136       | 151.4          | 59 - 326           | 139          | 3,826    |
| Rocky Mountain | nonstocked       | 4.9            | 0 - 28        | 95.1           | 36 - 270           | 111          | 1,946    |
| North          | large diameter   | 333.8          | 113 - 608     | 414.7          | 177 - 709          | 326          | 8,541    |
| North          | medium diameter  | 187.5          | 67 - 341      | 257.5          | 118 - 432          | 469          | 4,557    |
| North          | small diameter   | 58.9           | 0 - 166       | 117.4          | 48 - 238           | 557          | 3,383    |
| North          | nonstocked       | 8.4            | 0 - 33        | 74.5           | 44 - 119           | 466          | 187      |
| South          | large diameter   | 345.9          | 102 - 652     | 421.1          | 160 - 748          | 220          | 7,821    |
| South          | medium diameter  | 183.5          | 47 - 362      | 248.7          | 95 - 446           | 230          | 2,245    |
| South          | small diameter   | 45.1           | 0 - 137       | 98.9           | 33 - 204           | 257          | 1,570    |
| South          | nonstocked       | 6.5            | 0 - 29        | 75.0           | 43 - 122           | 278          | 171      |

| Appendix To | able C-4a Mea  | n Carbo  | on Density | , Range o | of Plot-Level | Densities, | and Fores | t Area on | Publicly | Owned |
|-------------|----------------|----------|------------|-----------|---------------|------------|-----------|-----------|----------|-------|
| Forestland  | (non-reserved) | ) by Reg | ion and S  | Stand-Age | e Class, 2013 | 5          |           |           |          |       |

Note: MT  $\operatorname{CO}_2$  eq/ha is metric tons carbon dioxide equivalent per hectare.

# Table C-4b Mean Carbon Density, Range of Plot-Level Densities, and Forest Area on Privately Owned Forestland (non-reserved) by Region and Stand-Age Class, 2013

|                | Stand size class | Live tree<br>carbon density | Live tree 5th<br>and 95th | Total non-soil<br>carbon density | Total non-soil<br>5th and 95th | Soil organic<br>carbon    | Forest<br>area |
|----------------|------------------|-----------------------------|---------------------------|----------------------------------|--------------------------------|---------------------------|----------------|
| Region         |                  | ,                           | percentiles               |                                  | percentiles                    | density                   |                |
|                |                  |                             |                           |                                  | $MT CO_2$                      |                           |                |
|                |                  | MT CO2 eq/ha                | MT CO <sub>2</sub> eq/ha  | MT CO2 eq/ha                     | eq/ha                          | MT CO <sub>2</sub> eq/ ha | 1,000 ha       |
| Pacific Coast  | large diameter   | 384.1                       | 36 - 990                  | 505.0                            | 89 - 1171                      | 248                       | 8,500          |
| Pacific Coast  | medium diameter  | 170.0                       | 21 - 433                  | 259.2                            | 67 - 563                       | 233                       | 2,560          |
| Pacific Coast  | small diameter   | 41.9                        | 0 - 145                   | 150.0                            | 61 - 275                       | 281                       | 2,574          |
| Pacific Coast  | nonstocked       | 12.0                        | 0 - 54                    | 137.1                            | 79 - 224                       | 254                       | 376            |
| Rocky Mountain | large diameter   | 115.7                       | 16 - 336                  | 175.9                            | 42 - 468                       | 97                        | 8,351          |
| Rocky Mountain | medium diameter  | 97.7                        | 13 - 301                  | 168.4                            | 41 - 425                       | 128                       | 1,760          |
| Rocky Mountain | small diameter   | 35.7                        | 0 - 101                   | 114.4                            | 45 - 207                       | 128                       | 1,813          |
| Rocky Mountain | nonstocked       | 5.5                         | 0 - 26                    | 72.7                             | 38 - 121                       | 117                       | 858            |
| North          | large diameter   | 324.2                       | 120 - 583                 | 397.0                            | 173 - 672                      | 278                       | 30,673         |
| North          | medium diameter  | 194.2                       | 66 - 357                  | 260.3                            | 113 - 444                      | 337                       | 14,982         |
| North          | small diameter   | 67.3                        | 0 - 189                   | 127.4                            | 42 - 274                       | 369                       | 8,278          |
| North          | nonstocked       | 9.9                         | 0 - 37                    | 70.8                             | 42 - 120                       | 427                       | 510            |
| South          | large diameter   | 286.1                       | 44 - 589                  | 351.8                            | 83 - 672                       | 203                       | 42,729         |
| South          | medium diameter  | 157.1                       | 28 - 322                  | 214.6                            | 66 - 397                       | 206                       | 23,052         |
| South          | small diameter   | 41.9                        | 0 - 141                   | 89.3                             | 33 - 200                       | 204                       | 20,088         |
| South          | nonstocked       | 4.1                         | 0 - 16                    | 60.8                             | 42 - 102                       | 241                       | 2,207          |

Note: MT  $\rm CO_2$  eq/ha is metric tons carbon dioxide equivalent per hectare.



# Table C-4c Mean Carbon Density, Range of Plot-Level Densities, and Forest Area on Reserved Forestland (both public and private ownerships) by Region and Stand-Age Class, 2013

| Region         | Stand size class | Live tree<br>carbon density | Live tree 5th<br>and 95th<br>percentiles | Total non-soil<br>carbon density | Total non-soil<br>5th and 95th<br>percentiles | Soil organic<br>carbon density | Forest<br>area |
|----------------|------------------|-----------------------------|------------------------------------------|----------------------------------|-----------------------------------------------|--------------------------------|----------------|
|                |                  | MT CO2 eq/ha                | MT CO2 eq/ha                             | MT CO2 eq/ha                     | MT CO2 eq/ha                                  | MT CO2 eq/ha                   | 1,000 ha       |
| Pacific Coast  | large diameter   | 555.6                       | 67 - 1381                                | 755.8                            | 146 - 1687                                    | 249                            | 5,279          |
| Pacific Coast  | medium diameter  | 180.1                       | 3 - 504                                  | 302.4                            | 59 - 670                                      | 191                            | 495            |
| Pacific Coast  | small diameter   | 43.8                        | 0 - 145                                  | 187.6                            | 69 - 362                                      | 217                            | 938            |
| Pacific Coast  | nonstocked       | 6.9                         | 0 - 58                                   | 215.3                            | 72 - 503                                      | 222                            | 181            |
| Rocky Mountain | large diameter   | 197.9                       | 26 - 499                                 | 316.8                            | 56 - 691                                      | 112                            | 4,795          |
| Rocky Mountain | medium diameter  | 151.9                       | 22 - 351                                 | 268.8                            | 54 - 515                                      | 130                            | 966            |
| Rocky Mountain | small diameter   | 36.1                        | 0 - 141                                  | 162.9                            | 60 - 358                                      | 137                            | 1,251          |
| Rocky Mountain | nonstocked       | 5.1                         | 0 - 36                                   | 184.2                            | 47 - 428                                      | 128                            | 551            |
| North          | large diameter   | 370.2                       | 148 - 617                                | 470.2                            | 236 - 734                                     | 297                            | 1,900          |
| North          | medium diameter  | 215.4                       | 79 - 391                                 | 308.8                            | 147 - 493                                     | 376                            | 672            |
| North          | small diameter   | 70.0                        | 0 - 189                                  | 151.0                            | 57 - 364                                      | 566                            | 302            |
| North          | nonstocked       | 4.8                         | 0 - 25                                   | 105.7                            | 40 - 153                                      | 537                            | 19             |
| South          | large diameter   | 352.3                       | 86 - 660                                 | 449.1                            | 167 - 816                                     | 268                            | 1,054          |
| South          | medium diameter  | 165.8                       | 30 - 350                                 | 245.5                            | 87 - 455                                      | 331                            | 246            |
| South          | small diameter   | 43.2                        | 0 - 142                                  | 102.3                            | 40 - 243                                      | 490                            | 332            |
| South          | nonstocked       | 13.3                        | 0 - 43                                   | 81.5                             | 49 - 132                                      | 310                            | 41             |
| Notes:         |                  |                             |                                          |                                  |                                               |                                |                |



See USDA Forest Service (2015a) for additional details on how classifications are defined.

Carbon densities and forest areas are based on the most recent inventory per State for shaded area in Map 4-1.

Note that total non-soil stock also includes live trees.

 $\rm MT~CO_2~eq/ha$  is metric tons carbon dioxide equivalent per hectare.




Chapter 5 Download data: http://dx.doi.org/10.15482/USDA.ADC/1264249

# **Energy Use in Agriculture**

# 5.1 Summary of Greenhouse Gas Emissions From Energy Use in Agriculture

Approximately 0.83 quadrillion BTU of direct energy were used in agricultural production in 2013, resulting in more than 74 MMT of  $CO_2$  emissions (Table 5-1). The total energy consumption for all sectors in the United States, including agriculture, resulted in 5,331.5 MMT of  $CO_2$  emissions (EPA 2015). Production agriculture contributed approximately 1.4 percent of those total emissions. Within production agriculture, diesel fuel accounted for 41.9 percent of  $CO_2$  emissions and electricity contributed 37.4 percent of  $CO_2$  emissions. Gasoline consumption accounted for 9.6 percent of  $CO_2$ emissions, while liquefied petroleum (LP) gas and natural gas accounted for 6.8 percent and 4.1 percent respectively.

# 5.2 Spatial and Temporal Trends in Greenhouse Gas Emissions From Energy Use in Agriculture

The highest emissions from agricultural energy use in 2013 were in the Corn Belt and Northern Plains (Figure 5-1), followed by the Mountain, Southern Plains, Lake States, and the Pacific, which had the lowest emissions in this group. Relatively small emissions were estimated for the Southeast, Northeast, Delta, and Appalachian States (regions are defined in Table 5-2). There is a strong correlation between production and energy use/emissions. Generally, the States with the most agricultural production use the most energy and therefore have the highest  $CO_2$  emissions from agricultural production (Figure 5-1). However, emissions also vary by the types of energy used for farm production in each region. For example, even though the Pacific region was the third-highest energy user among the regions, it ranked only sixth in  $CO_2$  emissions due to its reliance on hydroelectric power (Figure 5-1).

Agricultural energy use and the resulting CO<sub>2</sub> emissions grew throughout the 1960s and 1970s, peaking in the late 1970s (Figure 5-2). High energy prices, stemming from the oil crises of the 1970s and early 1980s, drove farmers to be more energy efficient, resulting in a decline in total energy use and CO<sub>2</sub> emissions throughout most of the 1980s (Miranowski 2005). This decline is attributed to switching from gasoline-powered to more fuelefficient diesel-powered engines, adopting energyconserving tillage practices, shifting to larger multifunction machines, and adopting energy-saving methods for crop drying and irrigation (Uri and Day 1991; Sandretto and Payne 2006; Lin et al. 1995). Furthermore, policies such as the Energy Policy and Conservation Act of 1975 resulted in greater average fuel economy standards, and both gasoline- and diesel-powered equipment became



#### Table 5-1 Energy Use and Carbon Dioxide Emissions by Fuel Source on U.S. Farms, 2013

| Fuels               | Energy consumed | Carbon content | Fraction oxidized | CO <sub>2</sub> emissions |
|---------------------|-----------------|----------------|-------------------|---------------------------|
|                     | QBTU            | MMT C/QBTU     |                   | MMT CO2 eq.               |
| Diesel              | 0.422           | 20.17          | 1                 | 31.20                     |
| Gasoline            | 0.101           | 19.46          | 1                 | 7.21                      |
| LP <sup>1</sup> gas | 0.082           | 16.83          | 1                 | 5.08                      |
| Natural gas         | 0.058           | 14.46          | 1                 | 3.07                      |
| Electricity         | 0.165           | **             | **                | 27.86                     |
| Total               | 0.828           |                |                   | 74.42                     |

Notes: QBTU is quadrillion British thermal units. MMT C/QBTU is million metric tons carbon per quadrillion British thermal units. MMT CO<sub>2</sub> eq. is million metric tons carbon dioxide equivalent.

<sup>1</sup> LP gas = liquefied petroleum gas

\*\* Varies dependent on fuel source used to generate electricity and heat rate of power generating plants.



**Figure 5-1 CO<sub>2</sub> Emissions from Energy Use in Agriculture, by Region, 2013** (MMT CO<sub>2</sub> eq. is million metric tons of carbon dioxide equivalent)

increasingly energy efficient throughout the 1980s and 1990s. Declines in farm energy use leveled off in the late 1980s as energy prices dropped (Figure 5-2). Total energy use increased throughout most of the 1990s but, since 2000, yearly changes in total energy use have been annually variable with a slight average decreasing trend (-4.6 trillion BTU per year). However, energy productivity (i.e., output per unit of energy input) has increased significantly over that time, due to higher crop yields and more energy efficient input use. The spikes in diesel and gasoline use in 2009 reflect record-breaking U.S. corn and soybean production that year.

# 5.3 Sources of Greenhouse Gas Emissions From Energy Use on Agricultural Operations

Agricultural operations-including crop and livestock farms, dairies, nurseries, orchards, and greenhouses-require a variety of energy sources. Energy use varies by commodity produced, size of operation, and geographic location. Energy use also varies over time, depending on weather conditions, changes in energy prices, and changes in total annual crop and livestock production. For example, estimated diesel use spiked in 2009 when corn and soybean production reached all-time highs (Figure 5-2). The demand for diesel fuel in 2009 may have also been boosted by low bulk diesel prices, which fell to their lowest level in 5 years, dropping to \$1.68 compared to \$3.62 the year before (USDA/ NASS 2008-09). In 2012, when corn production was down because of a drought, the energy-use estimates for diesel fuel, LP gas, and natural gas all moved downward (USDA/NASS 2014a).

Energy used on farms is typically categorized as direct or indirect energy (Maranowski 2005). Direct energy is energy used on the farm, whereas indirect energy is the energy used to produce energy-intensive farm inputs, such as commercial fertilizers.

Liquid fuel is the most versatile form of direct energy used on farms because it can be used in vehicles and stationary equipment. Crop production uses large amounts of diesel fuel, gasoline, and LP gas for field operations. Most large farms use diesel-fueled vehicles for tilling, planting, cultivating, disking, harvesting, and applying fertilizers and pesticides. Gasoline is used for small trucks and older harvesting equipment. Smaller farms are more likely to use gasoline-powered equipment. As farms have grown larger over time, overall gasoline consumption has declined (Figure 5-2).

Farmers use a significant amount of energy to dry crops such as grain, tobacco, and peanuts. LP gas, electricity, diesel fuel, or natural gas can be used for crop drying. Annual rainfall can have a significant effect on the amount of energy used to dry crops from year to year. Above average rainfall, especially just prior to harvest time, increases the moisture level of grain, and more energy may be required to dry the grain to meet quality standards. The 2009 corn crop, for example, had high moisture content due to unusually wet weather that that fall (USDA/WAOB, 2009). Because 2009 was also a record year for corn and soybean production, energy requirements for drying were extremely high and the estimated LP use was a record high that year.

Weather can also affect the energy used in livestock facilities, greenhouses, and other farm buildings. Natural gas and electricity are commonly used for controlling indoor temperatures. A significant amount of electricity is also used for lighting, air circulation, and powering electric motors with various functions. For example, dairies rely heavily on electricity to power milking machines. The applications of electric-powered farm equipment have increased over time, contributing to higher on-farm electricity use.

There were about 55 million irrigated acres in 2013, about 200,000 less than reported in 2008. While some irrigation systems are gravity-flow systems that require relatively little energy for water distribution, irrigation systems that use pumps are energy intensive. Based on the 2013 USDA Farm and Ranch Irrigation Survey, about 52 million acres of U.S. farmland were irrigated with pumps powered by liquid fuels, natural gas, LP gas, and electricity, costing a total of \$2.67 billion (USDA/NASS 2014b). Electricity was the principle power source for these

| Region          | States of Region | Region          | States of Region | Region    | States of Region |
|-----------------|------------------|-----------------|------------------|-----------|------------------|
| Corn Belt       | Illinois         | Pacific         | California       | Southeast | Alabama          |
|                 | Indiana          |                 | Oregon           |           | Florida          |
|                 | Iowa             |                 | Washington       |           | Georgia          |
|                 | Missouri         | Southern Plains | Oklahoma         |           | South Carolina   |
|                 | Ohio             |                 | Texas            | Northeast | Connecticut      |
| Mountain        | Arizona          | Lake States     | Michigan         |           | Delaware         |
|                 | Colorado         |                 | Minnesota        |           | Maine            |
|                 | Idaho            |                 | Wisconsin        |           | Maryland         |
|                 | Montana          | Appalachian     | Kentucky         |           | Massachusetts    |
|                 | Nevada           |                 | North Carolina   |           | New Hampshire    |
|                 | New Mexico       |                 | Tennessee        |           | New Jersey       |
|                 | Utah             |                 | Virginia         |           | New York         |
|                 | Wyoming          |                 | West Virginia    |           | Pennsylvania     |
| Northern Plains | Kansas           | Delta States    | Arkansas         |           | Rhode Island     |
|                 | Nebraska         |                 | Louisiana        |           | Vermont          |
|                 | North Dakota     |                 | Mississippi      |           |                  |
|                 | South Dakota     |                 |                  |           |                  |

#### Table 5-2 Definition of Regions Used in Figure 5-1

pumps, costing about \$1.85 billion to irrigate over 33 million acres. Diesel fuel was used to power pumps on about 13 million acres, costing over \$500 million, and natural gas was used on about 4 million acres, costing around \$222 million (USDA/NASS 2014b). The remaining irrigation acreage was powered by LP gas, butane, and gasoline.

Indirect energy is used off the farm to manufacture farm inputs that are ultimately consumed on the farm. Some farm inputs such as fertilizers and pesticides are produced by energy-intensive industries. For example, commercial nitrogen fertilizer is made primarily from natural gas, and synthetic pesticides are made from a variety of chemicals. Although GHG emissions result from the energy consumption used in manufacturing agricultural inputs, these indirect emissions are not detailed in this inventory. For information on the GHG emissions associated with manufacturing commercial fertilizers, see *Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013* (EPA 2015).

# 5.4 Methods for Estimating Carbon Dioxide Emissions From Energy Use in Agriculture

CO<sub>2</sub> emission estimates for energy use are constructed from fuel consumption data using standardized methods published in the U.S. GHG Inventory. Emission estimates for fuel use in agriculture are not separately published in the U.S. GHG Inventory; however, they are contained in the estimates of fuel consumption and emissions by sectors. The emissions estimates presented in this chapter were prepared separately from the U.S. GHG Inventory.

Estimates of CO<sub>2</sub> from agricultural operations are based on annual energy expense data from the Agricultural Resource Management Survey (ARMS) conducted by the National Agricultural Statistics Service (NASS) of the USDA. NASS collects information on farm production expenditures including expenditures on diesel fuel, gasoline, LP gas, natural gas, and electricity use on the farm (USDA/NASS 2014c). NASS also collects data on price per gallon paid by farmers for gasoline, diesel, and LP gas (USDA/NASS 2013). Energy expenditures are divided by fuel prices to approximate gallons of fuel consumed on the farm. Gallons of gasoline, diesel, and LP gas are then



(BTU - British thermal unit)





Figure 5-3 CO2 Emissions from Energy Use in Agriculture, by Fuel Source, 2001, 2005, 2008, and 2013 (MMT CO, eq. is million metric tons of carbon dioxide equivalent)



converted to BTU based on the heating value of each

Following the method outlined in Annex 2 of the U.S. GHG Inventory, consumption of diesel fuel, gasoline, LP gas, and natural gas used on the farm was converted to CO<sub>2</sub> emissions using the coefficients for carbon content of fuels and fraction of carbon oxidized during combustion (Table 5-1). These carbon content coefficients were derived by EIA and are similar to those published by the Intergovernmental Panel on Climate Change (IPCC). For each fuel type, fuel consumption in units of quadrillion BTU was multiplied by the carbon content coefficient to estimate the million metric tons (MMT) of carbon contained in the fuel consumed. This value is sometimes referred to as "potential emissions" because it represents the maximum amount of carbon that could be released to the atmosphere if all carbon were oxidized (EPA 2015). To convert from carbon content to  $CO_2$ , it was assumed that 100 percent of the carbon became oxidized.

# from electricity that includes on-farm electricity use, as well as the energy required to generate the electricity off the farm. A number of fuel sources can be used to generate electricity, therefore the mix of fuel sources used by power plants in a region can vary significantly. Some regions of the country rely more on coal for electricity generation, while other regions use more natural gas to generate electricity. To account for this variation, the CO<sub>2</sub> emission estimates from electricity generation in this chapter are derived from State data available from EIA. In response to a special request from USDA, EIA tabulated State emission factors for the States in the NASS production regions. The regional electricity emission factors represent average CO<sub>2</sub> emissions generated by utility and nonutility electric generators for the 1998 through 2000 time period. These regional emission factors were multiplied by estimated electricity use in each farm production region to calculate CO<sub>2</sub> emissions. As reported above, electricity use is estimated from farm expenditure data collected by NASS. Price estimates for electricity published by EIA are divided into electricity expenditures to derive the kilowatt hours consumed on agricultural operations. The kilowatt hours of electricity used on the farm are converted to BTU, based on a standard conversion rate of 3,413 BTU per kilowatt hour.

A different approach was used to estimate emissions

### 5.5 Major Changes Compared to Previous Inventories

This report is the fourth edition of the U.S. Agriculture and Forestry Greenhouse Inventory, which estimates GHG emissions for the year 2013. Figure 5-3 compares the 2013 results with the three previous study periods, 2008, 2005 and 2001. As discussed in Section 5.3, annual GHG emissions from energy use in the agricultural sector will vary with changes in crop and livestock production levels and with changes in annual weather conditions. Total emissions in 2001 are slightly greater than the other 3 years, with most of the difference coming from a higher use of diesel fuel (Figure 5-3). It appears that changes in GHG emissions generally follow longterm energy trends as shown in Figure 5.2. When a short term fluctuation in GHG emissions occurred, it probably was related to a major weather event or other factors significantly affecting agricultural production.

#### SUGGESTED CITATION

Duffield, J., 2016. Chapter 5: Energy Use in Agriculture. In U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2013, Technical Bulletin No. 1943, United States Department of Agriculture, Office of the Chief Economist, Washington, DC. 137 pp. September 2016. Del Grosso S.J. and M. Baranski, Eds.

#### 5.6 References

AEIA (2015a). Electric Power Monthly. Energy Information Administration, U.S. Department of Energy. February, 2015. Available online at http://www.eia.gov/electricity/monthly/index. cfm?src=Electricity-f2

EIA (2015b). Natural Gas Monthly. Energy Information Administration, U.S. Department of Energy. May, 2015. Available online at http://www.eia.gov/naturalgas/monthly/?src=Natural-f1

EPA (2015). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013. ANNEX 2 Methodology and Data for Estimating CO<sub>2</sub> Emissions from Fossil Fuel Combustion. Environmental Protection Agency, Office of Atmospheric Programs, Washington DC. April, 2015. Available at http://www. epa.gov/climatechange/ghgemissions/usinventoryreport.html

Lin, B.H., M. Padgitt, L. Bull, H. Delvo, D. Shank, and H. Taylor (1995). Pesticide and Fertilizer Use and Trends in U.S. Agriculture. AER-717, Economic Research Service, United States Department of Agriculture, Washington DC.

Miranowski, J. A. (2005). Energy Consumption in US Agriculture, in Agriculture as a Producer and Consumer of Energy, J. Outlaw, K. Collins, and J. Duffield, eds., pages 68-95, CABI Publishing, Cambridge, MA, 2005.

Sandretto and Payne (2006). Chapter 4: Soil Management and Conservation. Agricultural Resources and Envirnomental Indicators, 2006 edition. Economic Research Service, United States Department of Agriculture. Available online at http://www. ers.usda.gov/publications/eib-economic-information-bulletin/ eib16.aspx

Uri, N.D. and K. Day (1991). Energy Efficiency, Technological Change and the Dieselization of Agriculture in the United States. Transportation Planning and Technology, 16: 221-231.

USDA NASS (2014a). Crop Production Historical Track Records, April 2014. National Agricultural Statistics Service, United States Department of Agriculture, Washington DC.

USDA NASS (2014b). Farm and Ranch Irrigation Survey (2013), Volume 3, Special Studies, Part 1. AC-12-SS-1, National Agricultural Statistics Service, United States Department of Agriculture, Washington, DC, November 2014. Available online at http://www.agcensus.usda.gov/Publications/2012/ Online\_Resources/Farm\_and\_Ranch\_Irrigation\_Survey/



USDA NASS (2014c). Farm Production Expenditures 2013 Summary. National Agricultural Statistics Service, United States Department of Agriculture, Washington DC. Available online at http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo. do?documentID=1066

USDA NASS Agricultural Prices (2008-2009). National Agricultural Statistics Service, Agricultural Statistics Board, United States Department of Agriculture, Washington, DC, April, 2008-09. Available online at http://usda.mannlib.cornell.edu/ MannUsda/viewDocumentInfo.do?documentID=1002

USDA NASS Agricultural Prices (2013). National Agricultural Statistics Service, Agricultural Statistics Board, United States Department of Agriculture, Washington, DC, April, 2013. Available online at http://usda.mannlib.cornell.edu/MannUsda/ viewDocumentInfo.do?documentID=1002

USDA WAOB (2009) Weekly Weather and Crop Bulletin. World Agricultural Outlook Board, United States Department of Agriculture, Washington, DC. Available online at http:// usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo. do?documentID=1393.



#### U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2013

United States Department of Agriculture, Office of the Chief Economist, Climate Change Program Office. Technical Bulletin No. 1943. 137 pp. September 2016.

This publication supersedes TB-1930, U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2008.

In accordance with Federal civil rights law and United States Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at How to File a Program Discrimination Complaint and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: United States Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: program.intake@usda.gov.

USDA is an equal opportunity provider, employer, and lender.

